Exhibit X. LSU Innovation Park Geotechnical Engineering Report A

Geotechnical Engineering Report

Emerge Center - LSU South Campus Baton Rouge, Louisiana

October 23, 2012 Terracon Project No. EH125101

Prepared for:

Coleman Partners Baton Rouge, Louisiana

Prepared by:

Terracon Consultants, Inc. Baton Rouge, Louisiana

Offices Nationwide Employee-Owned Established in 1965 terracon.com

October 23, 2012

Coleman Partners 3377 North Boulevard Baton Rouge, Louisiana 70806

Attn: Mr. Heltz

E: jheltz@cparch.com

Re: Geotechnical Engineering Report

Emerge Center - LSU South Campus

Baton Rouge, Louisiana

Terracon Project Number: EH125101

Dear Mr. Heltz:

We have completed the geotechnical engineering services for the above-referenced project. This work was performed in accordance with our proposal number PEH120313 dated August 27, 2012.

This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs and pavements for the proposed project.

We should collaborate with you as you finalize the designs. We should also review the pertinent aspects of the plans and specifications and provide construction materials and engineering testing services when the project moves into construction.

Sincerely,

Terracon Consultants, Inc.

Lynne E. Roussel, P.E.

Project Engineer

Stephen E. Greaber, P.E.

Principal

TABLE OF CONTENTS

=======================================	=:::- ::- ::-		D)/		'age
1.0					
2.0		_	-		
				S	
		•			
				escription	
3.0				S	
				tions	
4.0				DESIGN AND CONSTRUCTION	
				derations	
		4.2.1		ion	
		4.2.2			
	4	4.2.3		ypes	
	4	4.2.4		Requirements	
		4.2.5		Backfill	
	4.3 I	Driven		oundations	
		4.3.1		ies	
	4	4.3.2	Pile Load Tes	st	8
	4	4.3.3		city	
	4	4.3.4			
	4	4.3.5	Driven Timbe	r Pile Installation	8
	4.5 I	Pavem			
	4	4.5.1	Subgrade Pre	eparation	9
	4	4.5.2		derations	
	4	4.5.3	Estimates of	Minimum Pavement Thickness	10
	4	4.5.4	Pavement Dra	ainage	11
				iintenance	
5.0	GENER	AL CO	DMMENTS		11
APPE	NDIX A -	- FIELI	D EXPLORATI	ON	
	Exhibit /	A-1		Site Location Map	
	Exhibit /	A-2		Soil Boring and CPT Probe Location Plan	
	Exhibit /	A-3		Field Exploration and Methods	
	Borings	B-1 to	B-6	Boring Logs	
	CPTs C	PT-1 t	o CPT-3	CPT Logs	
APPE	NDIX B -	- LAB	DRATORY TE	STING	
	Exhibit I	B-1		Laboratory Testing Description	

Explanation of Soil Boring Information Unified Soil Classification System

Exhibit C-2

APPENDIX C - SUPPORTING DOCUMENTS Exhibit C-1

Geotechnical Engineering Report

Emerge Center - LSU South Campus

Baton Rouge, Louisiana

October 23, 2012

Terracon Project Number EH125101

i

EXECUTIVE SUMMARY

This report provides the results of a geotechnical study for a proposed Emerge Center to be constructed at the LSU South Campus in Baton Rouge, Louisiana. Based upon the soil borings and CPT probes made, and the associated laboratory testing performed, we have made the following conclusions and recommendations in this report:

- The surficial lean clay is moisture sensitive. This relatively flat site could become difficult to access in wet periods, so good drainage (short term and long term) is important.
- The soft soils encountered below approximately 4 feet at the site are normally consolidated and placement of the building on shallow foundation is not feasible due to the anticipated excessive settlement. The structure and slab can be supported on a driven timber pile foundation system.
- A rigid (portland cement concrete) paving system can be used for this site. Due to anticipate marginal stability from elevated moisture of the near surface lean clays, lime treatment should be specified to stabilize the subgrade soils under new pavement areas.
- On-site native lean clay soils typically appear suitable for use as general engineering fill; however, if they do not meet the low plasticity criteria, they should not be utilized within 24 inches of the finished grade beneath building areas.
- The 2009 International Building Code, Table 1613.5.2 IBC seismic site classification for this site is D.
- Close monitoring of the construction operations discussed herein will be important for achieving the design subgrade support. We therefore recommend that Terracon be retained to monitor this portion of the work.

This summary should be used in conjunction with the entire geotechnical engineering report for design purposes. The details were not included or fully developed in this section. The report must be read in its entirety for a comprehensive understanding of the items contained herein. We recommend that you read the **GENERAL COMMENTS** section for an understanding of the report and its limitations.

GEOTECHNICAL ENGINEERING REPORT

Emerge Center - LSU South Campus

Baton Rouge, Louisiana

Terracon Project Number EH125101 October 23, 2012

1.0 INTRODUCTION

Coleman Partners is planning the construction of the Emerge Center at the LSU South Campus in Baton Rouge, Louisiana. Six borings, designated B-01 through B-06, and three Cone Penetrometer Test (CPT) probes were performed to depths of approximately 4 to 50 feet below the existing ground surface within the proposed building and pavement areas. Logs of the borings and CPT probes along with a site location map, and soil boring and CPT Probe location plan are included in Appendix A of this report.

We performed this exploration to provide information and geotechnical engineering recommendations relative to:

- soil conditions
- groundwater conditions
- site preparation

- foundation design and construction
- floor slab design and construction
- seismic considerations
- pavement design and construction

2.0 PROJECT INFORMATION

The following paragraphs present the project information that was available at the time this report was prepared. Should this information be incorrect, or changed significantly, please contact this office so that we could reevaluate our analysis and recommendations.

2.1 Information Sources

Project information was provided by Coleman Partners representative, Mr. Jonathan Heltz, who provided plans for the proposed development.

2.2 Project Description

Item	Description						
Site layout	See Exhibit A-2, Boring Location Plan						
Building construction	A new one-story structure approximately 26,500 square feet in plan. The existing pavement may be used or will be replaced. The structure will be steel frame or reinforced masonry with veneer finish.						

Item	Description								
Finished floor elevation	Not provided.								
	Columns: <50 kips (assumed)								
Maximum loads	Walls: <3 kips per linear foot (assumed)								
	Slabs: <125 psf max (assumed)								
Estimated settlement Sensitivity	We are not aware of any construction that will have movement (shrink/swell or settlement) sensitivity in excess of normal.								
Pavement construction	Light and medium duty pavement, assumes car parking only for light duty, car and relatively light delivery trucks for medium duty. Existing concrete pavement is in poor condition with elevated subgrade moistures.								
Grading	Not provided but assumed to be less than 2 feet.								

2.3 Site Location and Description

Item	Description					
Location	LSU South Campus, Baton Rouge, Louisiana					
Location	Approximate Latitude: 30.36100 degrees Longitude 91.14191 degrees					
Existing improvements	Vacant lot with concrete pavement along GSRI Road.					
Current ground cover	Grass and concrete pavement.					
Existing topography	Flat.					

3.0 SUBSURFACE CONDITIONS

The soil borings and CPT probes encountered conditions that are typical for the geologic setting, based upon our experience in the vicinity of this site. The following paragraphs summarize our findings and opinions relative to the subsurface conditions.

3.1 Geology

The site is in an area of Natural Levee deposits, very close to Alluvial deposits of Holocene age. These Holocene Age deposits are broadly present throughout the area and are commonly characterized by firm to stiff clays and silty clays. At greater depth significant silt and sand layering may be present. The soils within the Natural Levee deposits are typically normally consolidated and tend to be compressible.

3.2 Soil Conditions

Beneath approximately 2 to 3 inches of organic laden soil and approximately 3 inches of concrete, the soil borings typically encountered medium stiff to very stiff lean clay (Unified Soil

Geotechnical Engineering Report

Emerge Center - LSU South Campus

Baton Rouge, Louisiana

October 23, 2012

Terracon Project Number EH125101

Classification System symbol, CL) 'crust' from the existing ground surface to approximately 4 feet. Below 4 feet, soft lean clay (CL) was identified to the boring termination depth of 10 feet. Soft lean clay (CL) was noted near the surface below the concrete at Boring B-06 in the existing parking area. Considering the widely-spaced borings, other soft areas may exist across the site and below the pavement.

The CPT probe data generally noted the presence of soft to medium stiff clays and lean clays to a depth of 40 feet. Below 40 feet, alternating layers of very stiff clay and medium dense sand were identified to a depth of 50 feet.

Conditions encountered at each boring/CPT location are indicated on the individual boring logs and CPT logs, respectively. Stratification boundaries on the boring logs represent the approximate location of changes in soil types; in situ, the transition between materials may be gradual. Details for each of the borings and CPT probes can be found on the boring logs in Appendix A of this report. Additional laboratory test results, if any, are presented in Appendix B.

3.3 Groundwater Conditions

The boreholes were observed while drilling and after completion of drilling for the presence and level of groundwater. Groundwater was encountered in the three deeper borings at a depth of about 8 feet below grade. The drilling operations were suspended for about 15 minutes to observe the change in water level over that time period. The water level rose to a depth of between 2 and 5 feet. The remaining borings did not encountered groundwater during drilling. Specific observations of groundwater level as recorded for each boring are noted on the boring logs in Appendix A.

Due to the low permeability of the soils encountered in the borings, a relatively long period of time may be necessary for the groundwater level to develop and stabilize in a borehole in these materials. Long term observations in piezometers or observation wells sealed from the influence of surface water are often required to define the field or in-situ groundwater level in materials of this type.

Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors that are not evident at the time of drilling. Therefore, the groundwater levels that may prevail during construction or at other times in the life of the structure may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for this project.

3.4 Seismic Conditions

Code Used	Site Classification
2009 International Building Code (IBC) 1	E ²

- 1. In general accordance with the 2009 International Building Code and ASCE 7-10.
- 2. Chapter 20 of ASCE 7-10, Minimum Design Loads for Building and Other Structures requires a site soil profile determination extending a depth of 100 feet for seismic site classification. The current scope does not include the required 100 foot soil profile determination. Borings and CPT soundings for the building extended to a maximum depth of approximately 50 feet and this seismic site class definition assumes that subsurface conditions encountered extend to a depth of 100 feet. Based on our knowledge of the geologic formation, the assumed site classification is considered reasonable. Additional exploration to deeper depths could be performed to confirm the conditions below the current depth of exploration. Alternatively, a geophysical exploration could be utilized to define the seismic site class.

4.0 RECOMMENDATIONS FOR DESIGN AND CONSTRUCTION

The information provided by the developers for this project has been combined with our findings from the site exploration and laboratory testing to develop guideline recommendations for site preparation, foundation design, and pavement design. These recommendations are detailed in the following paragraphs.

4.1 Geotechnical Considerations

The near surface, lean clay soils are moisture sensitive and good drainage should be completed early in the construction sequence and maintained after construction. The soils below 2 feet were very moist to wet. Maintaining the integrity of the upper stiff "crust" will be difficult with repetitive traffic from construction traffic. Additional site preparation recommendations, including subgrade improvement, fill placement, and excavations are provided in the **Section 4.2**.

The soft soils encountered below approximately 4 feet at the site are normally consolidated and placement of the building on shallow foundation is not feasible due to the anticipated excessive settlement. The structure can be supported on a driven timber pile foundation system. **Section 4.3** addresses deep foundation support of the structure and floor slab.

A rigid (portland cement concrete) paving system can be used for this site. Due to anticipate marginal stability from elevated moisture of the near surface lean clays, lime treatment should be specified to stabilize the existing subgrade soils in the pavement area. **Section 4.5** addresses design of pavement systems.

Appropriate quality assurance and quality control provisions are essential to the successful implementation of the recommendations provided in the subsequent paragraphs for site preparation and foundation construction and are subject to the proper construction practices and materials. **Section 5** addresses the required quality assurance and quality control provisions that are within the scope of this project.

4.2 Earthwork

A critical aspect of the successful construction project is the earthwork. Good earthwork is also critical to the overall performance of the foundation and pavement systems for the building. This section provides recommendations for site preparation, material types, compaction requirements, utility trench backfill, grading and drainage, and construction considerations.

4.2.1 Site Preparation

The combination of a relatively flat, and poorly drained site, and moisture sensitive, near surface soils creates the need to establish good drainage as far in advance of construction as possible. Good drainage should be established throughout the site preparation and construction process. This is particularly important if any aspects of construction are attempted during wet periods.

After establishing drainage, the site should be cleared and grubbed to remove trees, grass and topsoil including: stumps, roots, organic laden soil, organic matter, and any rubble or debris encountered. When trees are removed, the entire root ball should be excavated such that the remaining roots measure 1 inch in diameter, or less, and the remaining excavation should be sloped to allow compaction equipment to achieve uniform backfill compaction.

Where the existing pavement is removed, soft saturated clays maybe present under pavement. These soft areas may require mitigation such as overexcavation or lime treatment. After the site has been adequately grubbed and cleared, the entire construction area should be proof-rolled to observe for the presence of weak, yielding or pumping foundation soils. A heavily loaded rubber-tired vehicle should be used for the proof-rolling operation. The vehicle should weigh between 10 and 20 Tons (total weight). If soft areas are encountered, they should be mitigated. If the areas are isolated, mitigation by limited overexcavation and replacement with competent soils or lime treatment as approved by the geotechnical engineer at the time of construction, may suffice.

4.2.2 Excavations

The shallow utility excavations will be made within the medium stiff to very stiff lean clays with minimal difficulty. Groundwater seepage is possible but should be controllable with standard sump pump techniques. Any stormwater or groundwater that enters the excavations should be removed promptly.

At a minimum, all temporary excavations should be sloped or braced as required by Occupational Safety and Health Administration (OSHA) regulations to provide stability and safe working conditions. Temporary excavations greater than 5 feet in depth may be required during grading operations. The grading contractor is responsible for designing and constructing stable, temporary excavations and should shore, slope or bench the sides of the excavations as required, to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, state and federal safety regulations, including the current OSHA Excavation and Trench Safety Standards.

4.2.3 Fill Material Types

Fill used to bring the site to grade should meet the following material property requirements:

Fill Type ¹	USCS Classification	Acceptable Location for Placement						
Lean Clay, Clayey Sand	CL, SC (LL<45, 10 <pi<25)< td=""><td>All locations and elevations</td></pi<25)<>	All locations and elevations						
On-site soils	Varies	The on-site lean clay soils appear suitable for use as fill.						

^{1.} Controlled, compacted fill should consist of approved materials that are free of organic matter and debris. A sample of each material type should be submitted to the geotechnical engineer for evaluation.

4.2.4 Compaction Requirements

Item	Description
Fill Lift Thickness	9 inches or less in loose thickness when heavy, self-propelled compaction equipment is used
Fill Lift HillCkness	4 to 6 inches in loose thickness when hand-guided equipment (i.e. jumping jack or plate compactor) is used
Compaction Requirements ¹	Minimum 95% of the standard Proctor maximum dry density (ASTM D 698)
Moisture Content of Cohesive Soil	Within the range of 2% below to 3% above the optimum moisture content value as determined by the standard Proctor test at the time of placement and compaction with stability present.
Moisture Content of Granular Material ²	Workable moisture levels

- Fill should be tested for moisture content and compaction during placement. Should the results of the in-place density tests indicate the specified moisture or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified moisture and compaction requirements are achieved.
- 2. Specifically, moisture levels should be maintained low enough to allow for satisfactory compaction to be achieved without the cohesionless fill material pumping when proof-rolled.

4.2.5 Utility Trench Backfill

All trench excavations should be made with sufficient working space to permit construction including backfill placement and compaction. If utility trenches are backfilled with relatively clean granular material, they should be capped with at least 18 inches of cohesive fill in non-pavement areas to reduce the infiltration and conveyance of surface water through the trench backfill.

Utility trenches are a common source of water infiltration and migration. All utility trenches that penetrate beneath the building should be effectively sealed to restrict water intrusion and flow through the trenches that could migrate below the building. We recommend constructing an effective clay "trench plug" that extends at least 5 feet out from the face of the building exterior. The plug material should consist of clay compacted at a water content at or above the soils optimum water content. The clay fill should be placed to completely surround the utility line and be compacted in accordance with recommendations in this report.

4.3 Driven Timber Pile Foundations

Due to the presence of soft and compressible soil conditions and the anticipated structural loads, driven treated timber piles appear to be a viable option for the support of the proposed structure and floor slab. The following paragraphs provide additional design recommendations and construction considerations for installation of a timber pile deep foundation and slab support system.

4.3.1 Axial Capacities

The piles should be installed to a target tip depth of 47 feet below existing grade into the layered stiff clay and medium dense sand stratum identified below approximately 40 to 45 feet. The following table shows the allowable pile capacity for a 12-inch butt, 7-inch tip ASTM D25 Class B timber pile driven to 47 feet below existing grade. A factor of safety of 2 was used.

ASTM D25 Class B Timber Pile (12-inch butt, 7-inch tip)

Pile Length (ft)	Axial Compression Allowable Capacity (tons)
47	20

The above allowable axial load can be increased by 30% for highly transient loads such as maximum wind loads. In the case of uplift loading, only skin friction of the pile should be considered to resist uplift loads. Neglecting adhesion in the upper 4 feet of the pile, an allowable uplift capacity of 4 tons pile is recommended. The project structural engineer should evaluate the uplift capacity considering connection limitations of timber piles. Piles should be spaced no closer than 3 pile diameters (center to center). For pile groups, the final design should be checked to evaluate the need for group efficiency reductions.

4.3.2 Pile Load Test

A field load test must be performed to verify the predicted allowable axial capacity. The load test should consist of the installation of the predominant pile type and depth planned for construction. The test pile should be loaded to a minimum of 250% of its design capacity. We should oversee the load testing program and reevaluate our capacity predictions based upon the test results. Observation of pile installation is necessary to confirm actual pile capacities, and, therefore, required pile lengths.

4.3.3 Lateral Capacity

We have not performed lateral capacity analyses. If lateral loads exceed 2 tons/pile, a detailed analysis of lateral load capacity should be performed after the actual loading conditions have been determined and after the foundation type has been selected.

4.3.4 Settlement

Piles capable of supporting the anticipated axial loading are not expected to undergo large settlement. Long-term settlement of deep foundations is not anticipated to exceed one inch for driven piles under the allowable compressive loads.

However, if more than two feet of fill will be placed at this site to achieve final grade, fill induced settlements may create downdrag effects on the piles and may result in a reduction in the allowable capacity of the pile or pile settlement. Our office should be notified if fill in excess of two feet is planned so that we can evaluate the effect on the pile capacity, and other potential settlement related development issues.

4.3.5 Driven Timber Pile Installation

The timber piles should be installed using a conventional pile hammer with an energy rating of between 7,500 and 15,000 ft-lb. Pile driving should not be difficult in the upper cohesive soils.

The driving criteria should be established at the time of construction based on the characteristics of the pile driving hammer used and the required pile capacity. A pile driving analyzer (PDA) should be used during the initial pile driving operations to check the performance of the hammer being used and to verify the field pile capacity. Vibration monitoring should be performed if movement-sensitive structures are located within 200 feet of the installation.

Proper site preparation, construction techniques, and quality control are important for the integrity of the deep foundation system. These construction efforts should be monitored and documented by the geotechnical engineer's representative.

4.4 Floor Slabs

Details concerning floor slab design were not available at the time of our exploration. The floor slab should be designed as a structural slab with grade beams supported by timber piles as designed by the structural engineer.

4.5 Pavements

Based on experience with similar projects, a portland cement concrete (rigid) pavement system can be used. The existing concrete pavement is in poor condition with a marginally stable subgrade due to elevated moisture. It is recommended that the pavement be removed and replaced with new concrete pavement over existing lime treated subgrade.

4.5.1 Subgrade Preparation

On most project sites, the site grading is accomplished relatively early in the construction phase. Fills are placed and compacted in a uniform manner. However, as construction proceeds, excavations are made into these areas, rainfall and surface water saturates some areas, heavy traffic from concrete trucks and other delivery vehicles disturbs the subgrade and many surface irregularities are filled in with loose soils to improve trafficability temporarily. As a result, the pavement subgrades, initially prepared early in the project, should be carefully evaluated as the time for pavement construction approaches.

Subgrade stability is a transient condition affected by weather and construction traffic. We recommend the stability of the subgrade be evaluated and the pavement subgrades subjected to a proof roll within two days prior to commencement of actual paving operations or placement of any formwork. Areas unstable under proof-roll should be moisture conditioned and recompacted or lime treated. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the materials with properly compacted fills. To improve the stability of the moisture sensitive lean clays, upon removal of the existing pavement the subgrade below the planned new pavement should be lime treated.

4.5.2 Design Considerations

Anticipated traffic volumes and loading conditions for this facility were not provided, but we have made assumptions based our experience with similar projects. We have also assumed 20-year design life. We expect that the pavements within the facility are likely to be subjected to two loading conditions:

- Light Duty: passenger vehicle parking only.
- Medium Duty: passenger vehicles at a frequency of 1,000 vehicles per week along with school buses, medium sized delivery and trash collection trucks at a frequency of less than 40 per week and no tractor-trailer trucks.

Pavement thickness can be determined using AASHTO, Asphalt Institute and/or other methods if specific wheel loads, axle configurations, frequencies, and desired pavement life are provided. Terracon can provide thickness recommendations for pavements subjected to loads other than personal vehicle and occasional delivery and trash removal truck traffic if this information is provided.

Pavement design methods are intended to provide structural sections with adequate thickness over a particular subgrade such that wheel loads are reduced to a level the subgrade can support. The support characteristics of the subgrade for pavement design do not account for shrink/swell movements. Thus, the pavement may be adequate from a structural standpoint, yet still experience cracking and deformation due to shrink/swell related movement of the subgrade.

Pavement performance is affected by its surroundings. In addition to providing preventive maintenance, the civil engineer should consider the following recommendations in the design and layout of pavements:

- Final grade adjacent to parking lots and drives should slope down from pavement edges at a minimum 2%:
- The subgrade and the pavement surface should have a minimum ¼ inch per foot slope to promote proper surface drainage;
- Install pavement drainage surrounding areas anticipated for frequent wetting (e.g., maintenance areas, wash racks);
- Install joint sealant and seal cracks immediately;
- Seal all landscaped areas in, or adjacent to pavements to reduce moisture migration to subgrade soils;
- Place compacted, low permeability backfill against the exterior side of curb and gutter;
 and.
- Place curb, gutter and/or sidewalk directly on clay subgrade soils rather than on unbound granular base course materials.

4.5.3 Estimates of Minimum Pavement Thickness

Typical Pavement Section Thickness (inches)										
Traffic Area	Alternative Portland Cement Concrete 1,2 Course 3			Total Thickness						
Light Duty (Car Parking Stalls)	PCC	PCC 5.0		9.0						
Medium Duty (Drive Areas)	PCC 60		12.0	10.0						
Entrances & Trash Container Pad ⁴	PCC	8.0	12.0	12.0						

- 1. 4,000 psi at 28 days, 4-inch maximum slump and 5 to 7 percent air entrained.
- 2. Standard design and construction details for rigid pavements are contained in ACI330R-08. It is recommended that the design engineer refer to this document for more detailed information. A critical aspect of concrete pavements for facilities of this nature is joint spacing and related details. ACI330R-08 addresses these important details.
- 3. The subgrade should be lime treated in general accordance with procedures outlined in LSSRB section 304, Type D treatment. A lime addition rate of 8% by volume is recommended and the mixture should be compacted to 95% of its maximum standard proctor dry density and within +2% or -2% of optimum.
- 4. The trash container pad should be large enough to support the container and the tipping axle of the collection truck. The trash container pad should be designed as a structural slab for the anticipated axle loads.

4.5.4 Pavement Drainage

Pavements should be sloped to provide rapid drainage of surface water. Water allowed to pond on or adjacent to the pavements could saturate the subgrade and contribute to premature pavement deterioration.

4.5.5 Pavement Maintenance

The pavement sections provided in this report represent minimum recommended thicknesses and, as such, periodic maintenance should be anticipated. We recommend that preventive maintenance should be planned and provided for through an on-going pavement management program. Preventive maintenance activities are intended to slow the rate of pavement deterioration, and to preserve the pavement investment. Preventive maintenance consists of crack and joint sealing, and patching as necessary. Preventive maintenance is usually the first priority when implementing a planned pavement maintenance program and provides the highest return on investment for pavements. Prior to implementing any maintenance, additional engineering observation is recommended to determine the type and extent of preventive maintenance. Even with periodic maintenance, some movements and related cracking may still occur and repairs may be required.

5.0 GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon should also be retained to provide observation and testing services during grading, excavation, foundation construction and other earth-related construction phases of the project.

The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information presented earlier in the report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. If variations

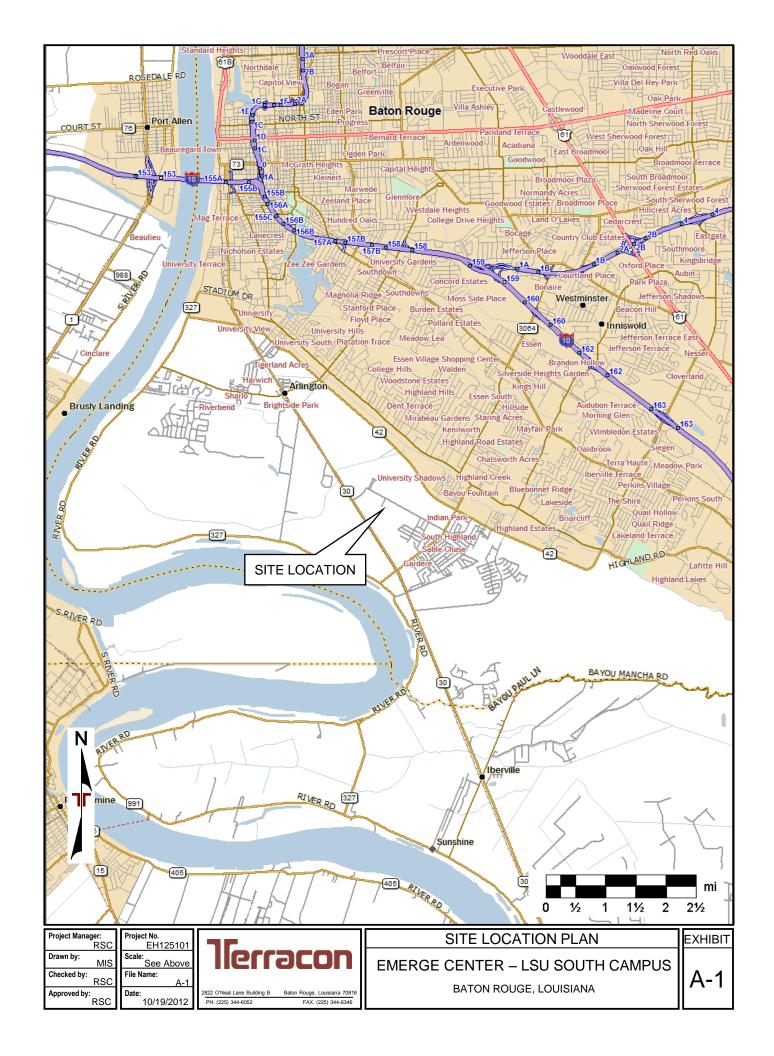
Geotechnical Engineering Report

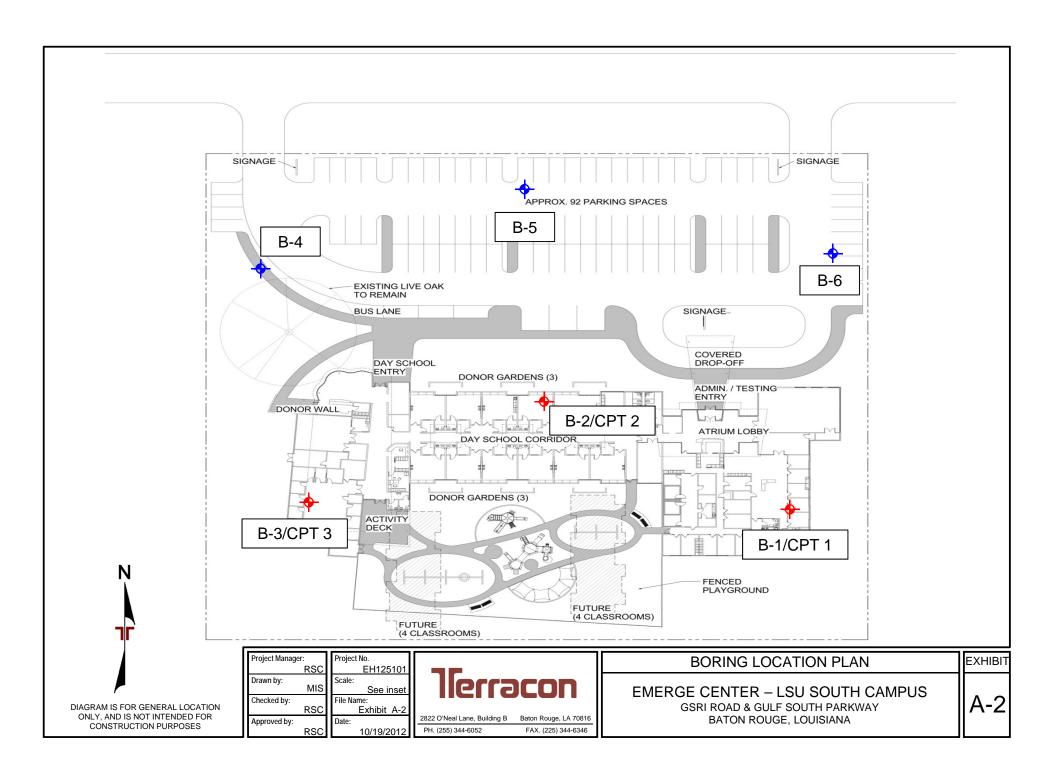
Emerge Center - LSU South Campus

Baton Rouge, Louisiana

October 23, 2012

Terracon Project Number EH125101




appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.

This report has been prepared for the exclusive use of our client for specific application to the project discussed and in accordance with generally accepted geotechnical engineering practices. No warranties, either expressed or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

APPENDIX A FIELD EXPLORATION AND METHODS

FIELD EXPLORATION AND METHODS

The field exploration was conducted utilizing standard procedures developed by Terracon Consultants, Inc. (Terracon) for studies of this nature. The information collected during the field exploration was documented by a Terracon Engineering Technician. The following paragraphs describe the field methods utilized. One or more soil borings were performed for this study. This Appendix includes detailed soil boring log(s) which present the data collected and provide a description of soil and groundwater conditions encountered. A legend that describes the terms and symbols used in the boring log(s) is included in **APPENDIX C**.

Site Reconnaissance

The engineering technician walked the project site and documented observations that are of significance to the geotechnical exploration. Such observations include: topography, vegetation, trees, drainage, other structures, surface soil conditions, and trafficability.

These observations were reported to the project engineer in the form of field notes. The project engineer reviewed the results of the field reconnaissance with the engineering technician in a project meeting subsequent to the field exploration.

Soil Exploration and Sampling

The soil boring(s) were advanced using our track-mounted drilling rig and equipment at the approximate location(s) shown on Exhibit A-2, Boring Location Plan. The location(s) were measured from known points.

<u>Soil Boring</u>: The boring(s) were advanced by rotating a four-inch diameter, continuous-flight earth auger with the drilling rig, removing the auger from each boring, and cleaning the cuttings from the auger before sampling or reinserting the auger back into the bore hole. This technique allowed for the observation of soil cuttings and description of soil conditions encountered. This dry auger technique allows detection of free groundwater within the boring.

<u>Soil Sampling:</u> The soil sampling program included the collection of undisturbed and representative soil samples. Relatively undisturbed samples, usually collected in cohesive soils, were obtained by pushing a three-inch diameter, Shelby tube sampler a distance of two feet into the soil in general accordance with ASTM D1587. Depths at which these undisturbed samples were obtained are indicated by a shaded portion in the "Samples" column of the attached boring log(s).

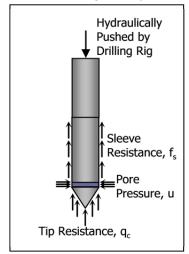
After the Shelby tube was removed from each boring, the sample was visually classified. Relative strength estimates of the sample were obtained by a hand-held pocket penetrometer. These penetrometer readings showing the estimated unconfined compressive strength in units

of tons per square foot are indicated by the symbol "(HP)" in the "Field Test Results" column of each boring log. The sample was extruded in the field and the samples were wrapped and sealed to minimize moisture loss. The sample was placed in a crate and transported to the Terracon laboratory.

Disturbed soil samples were also collected during the exploration by the auger method in accordance with ASTM D 1452 (AASHTO T203). The spiral-type (solid-stem) auger consisted of a flat thin metal strip, machine twisted to a spiral configuration of uniform pitch having at one end, a sharpened or hardened point, with a means of attaching a shaft or extension at the opposite end. Depths at which these auger samples were obtained are indicated by in the the attached boring logs. The soil content from the auger was visually classified, labeled and placed in a sealed container to minimize moisture loss during transportation to the laboratory.

<u>Groundwater Observations:</u> During the soil boring advancement and sampling operation, observations for free groundwater were made. Information regarding water level observations is recorded in the "groundwater" column on the soil boring log(s). Other information regarding water level observations has been noted under "Groundwater Level Data" at the bottom of each log.

<u>Boring Abandonment:</u> Upon completion of the field exploration phase of this study, each boring was sealed in accordance with State regulations.


Cone Penetration Testing

The field investigation included the Cone Penetrometer Tests (CPTs) as directed by the project engineer. The locations of CPT probing are shown in Exhibit A-2, Boring Location Plan.

At each designated location, a CPT test was performed by pushing a 10-square centimeter electric cone penetrometer at an approximate rate of 20 millimeters/second using the hydraulic

cylinders of the drilling rig. The cone penetrometer is equipped with electronic load cells to measure tip resistance and sleeve resistance, and a pressure transducer is measure the generated ambient pore pressure, as illustrated in the insert diagram.

Digital data representing the tip resistance, the sleeve penetration, the pore pressure and the CPT probe inclination are typically measured at 50 mm intervals during penetration using a CPT data acquisition system or logger. These data are transferred to an on-site computer using a cable transmission system. This process allowed continuous monitoring of the data as the cone is advanced in a real-time fashion.

Geotechnical Engineering Report
Emerge Center - LSU South Campus

Baton Rouge, Louisiana
October 23, 2012

Terracon Project Number EH125101

Upon completion of the test, the data collected were downloaded directly from the CPT data logger to an on-site computer. The collected data were then interpreted using a software package provided by the cone manufacture to provide the cone and sleeve resistance, pore pressure and inclination. The software also allows interpretation of soil types (clay, silt, sand, etc.), soil unit weight, and selected soil parameters, such as undrained shear strength, overconsolidation ratio, and equivalent standard penetration resistance. The conventional field data from the soil boring and the available laboratory test results (presented in Appendices A and B) can also correlate with the interpreted CPT data for a particular site.

The testing and calibration of the CPT device was conducted in general conformance with ASTM D 5778. The resulting CPT data are included in this Appendix.

	BORING LOG NO. B-01 Page 1 of 1											
F	ROJECT: Emerge Center - LSU South Campus	CLIENT: Coleman Partners Baton Rouge, Louisiana							,			
_	ITE: 7670 GSRI Baton Rouge, Louisiana		,		1							
٤	LOCATION See Exhibit A-2			NS E	ı . ⊢	STI	RENGTH	TEST	(%	- S	ATTERBERG LIMITS	
SOLUHAVAS			DEPTH (ft)	WATER LEVEL OBSERVATIONS SAMPI F TYPF	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI	
	LEAN CLAY (CL), brown, medium stiff						O					
				ightharpoonup								
					0.50 (HP)	UC	0.82	9.5	28	95	36-21-15	
12			5 -		0.25 (HP)							
.GDT 10/19.				$\overline{\nabla}$	0.75 (HP)							
SACON2012	soft				0.25 (HP)	UC	0.35	10.8	43	79	44-20-24	
TERFI	Boring Terminated at 10 Feet		10 -									
TERRACON SMART LOG-NO WELL SLOGS.EH125101.GPJ TERRACON2012.GDT 10/19/12												
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.												
EPARATE	Stratification lines are approximate. In-situ, the transition may be	e gradual.						<u> </u>	<u> </u>			
OT VALID IF SE	ancement Method: 1-10' - Short flight auger	See Exhibit A-3 for description of field procedures. See Appendix B for description of laboratory procedures and additional data. (if any). See Appendix C for explanation of symbols and			Notes: 0 Ft.:2" Topsoil with 6" Gravel/Soil Mix							
ADG IS N	ndonment Method: orings backfilled with soil cuttings upon completion.	abbreviations.										
INGL	WATER LEVEL OBSERVATIONS Groundwater initially observed at 8 feet	15			Boring Started: 10/4/2012 B				ng Com	pleted: 1	0/4/2012	
BOR	· · · · · · · · · · · · · · · · · · ·	llerraco	JN	Drill	Rig: Geoprobe			Drille	er: J. Os	siek		
THIS	2822 O'Neal Lane, Building B Baton Rouge, Louisiana			Project No.: EH125101 Exhibit A-4								

	BORING LOG NO. B-02 Page 1 of 1										of 1			
	PR	OJECT: Emerge Center - LSU South Campus	CLIENT: Coleman Partners Baton Rouge, Louisiana								_	_		
-	SIT	*			aton	Not	age	s, Louisia	ıııa					
	90	LOCATION See Exhibit A-2			_	NS E	PE	F .	STI	RENGTH	TEST	(%	. S	ATTERBERG LIMITS
	GRAPHICLOG	Latitude: 30.36148° Longitude: -91.14225° DEPTH			DEPTH (ft)	WATER LEVEL OBSERVATIONS	SAMPLE TY	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pcf)	LL-PL-PI
		LEAN CLAY (CL), tan to light gray, very stiff												
					_			1.75 (HP)	UC	3.03	8.2	16	116	33-15-18
		4.0			_			2.00 (HP)						
1/12		LEAN CLAY (CL), brown, soft			5			0.50 (HP)						
TERRACON SMART LOG-NO WELL SLOGS.EH125101.GPJ TERRACON2012.GDT 10/19/12					_			0.25 (HP)	UC	0.25	11.5	34	86	35-21-14
RACON2012		10.0			_			0.75 (HP)						
J TEF		Boring Terminated at 10 Feet			10									
)1.GP,														
112510														
GS.E														
SLO														
WELL														
OG-NC														
RTLC														
N SMA														
SACO														
TERF														
ORT.														
. REP														
GINAL														
MORI														
FRO														
PARATE		Stratification lines are approximate. In-situ, the transition may be	e gradual.											
IF SE		ement Method: ' - Short flight auger	See Exhibit A-3 for descr				Note							
VALI			See Appendix B for description of laboratory procedures and additional data, (if any).			res	υrι	:3" Topsoil						
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.		nment Method: gs backfilled with soil cuttings upon completion.	See Appendix C for expla abbreviations.	nation of symbols a	nd									
NG LO	$\overline{}$	WATER LEVEL OBSERVATIONS	75		_	В	Boring Started: 10/4/2012 B					ng Com	pleted: '	10/4/2012
BORIN	$\frac{}{}$	Groundwater initially observed at 8 feet Rise after 15 minutes	lien	.acc			rill F	Rig: Geoprobe			Drill	er: J. Os	siek	
THIS		and 10 mmates	2822 O'Neal Lane, Building B				Project No.: EH125101					Exhibit A-5		

	BORING LOG NO. B-03 Page 1 of 1											
	PROJECT: Emerge Center - LSU South Campus	CLIENT: Coleman Partners Baton Rouge, Louisiana							,			
	SITE: 7670 GSRI Baton Rouge, Louisiana		_									
	ပ LOCATION See Exhibit A-2			NS FF	ı ⊢	STI	RENGTH	TEST	(%	। . ह	ATTERBERG LIMITS	
	LOCATION See Exhibit A-2 Latitude: 30.36147° Longitude: -91.14281°		DEPTH (#)	WATER LEVEL OBSERVATIONS SAMPI F TYPF	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pdf)	LL-PL-PI	
	LEAN CLAY (CL), brown, medium stiff						0					
			- -									
					0.50 (HP)	UC	0.73	7.7	26	96	34-22-12	
9/12			5 -		0.50 (HP)							
2.GDT 10/19	soft		_		0.25 (HP)	UC	0.43	7.7	35	89	36-23-13	
RACON201	10.0		_		0.75 (HP)							
TER	Boring Terminated at 10 Feet		10 -									
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT. TERRACON SMART LOG-NO WELL SLOGS.EH125101.GPJ TERRACON2012.GDT 10/19/12	Stratification lines are approximate. In situ. the transition may											
PARA	Stratification lines are approximate. In-situ, the transition may	ue gradudar.										
S NOT VALID IF SEI	dvancement Method: 0'-10' - Short flight auger pandonment Method: Borings backfilled with soil cuttings upon completion.	See Exhibit A-3 for description of field procedures. See Appendix B for description of laboratory procedures and additional data, (if any). See Appendix C for explanation of symbols and abbreviations.			Notes: 0 Ft.:3" Topsoil with 8" Gravel/Soil Mix							
L0G I					-							
NG Z	WATER LEVEL OBSERVATIONS Groundwater initially observed at 8 feet	Terracon			Boring Started: 10/4/2012				ng Com	pleted: 1	0/4/2012	
S BOF	Rise after 15 minutes		JI I	Drill	Rig: Geoprobe			Drill	er: J. Os	siek		
Ħ	2 2822 O'Neal Lane, Building B Baton Rouge, Louisiana				Project No.: EH125101 Exhibit A-6							

		I	BORING LO	OG NO. B	3-04	4					Pa	ge 1 d	of 1
	PR	OJECT: Emerge Center - LSU South		CLIENT: Co				an-					
	SIT	Campus E: 7670 GSRI		Ват	ion	Rou	ge, Louisia	ana					
	.	Baton Rouge, Louisiana											
		LOCATION See Exhibit A-2				NS NS	T L	ST	RENGTH	TEST	(%	£	ATTERBERG LIMITS
	GRAPHIC LOG	Latitude: 30.36205° Longitude: -91.14244°			DEPTH (ft)	WATER LEVEL OBSERVATIONS	AMPLE 1YP FIELD TEST RESULTS	Æ	COMPRESSIVE STRENGTH (tsf)	(%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	
	RAP				DEP	ATER SER\	INPL TIELD RESI	TEST TYPE	PRES RENG (tsf)	STRAIN (%)	ONTE	DRY	LL-PL-PI
		DEPTH				>8		F	CON	ST	O	>	
		LEAN CLAY (CL), brown, soft to medium stiff			_		4.50 (HP)						
							4.00 (111)						
							0.50 (UD)						00 00 10
		4.0					0.50 (HP)				31	89	38-20-18
	<u>/////</u>	Boring Terminated at 4 Feet											
0.1													
TERRACON SMART LOG-NO WELL SLOGS.EH125101.GPJ TERRACON2012.GDT 10/19/12													
JT 10													
12.GE													
ON20													
RRAC													
J TE													
01.GF													
11251													
GS.E													
SLO													
WELL													
S-NO													
TLOC													
SMAR													
CON													
ERRA													
POR													
AL RI													
RIGIN													
O MO													
ED FR													
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.		Stratification lines are approximate. In-situ, the transition may b	e gradual.	<u>, </u>			•		•				
SEP!	Advanc	ement Method:	See Exhibit A-3 for descrip	ntion of field procedure	25	ΙN	lotes:						
LID IF		- Short flight auger	See Appendix B for descri	iption of laboratory pro			Ft.:3" Topsoil						
JT VA.	AL :	and the state of t	and additional data, (if any See Appendix C for explar										
IS NC		onment Method: ngs backfilled with soil cuttings upon completion.	abbreviations.	•									
, LOG		WATER LEVEL OBSERVATIONS				+	ring Observed 4011	/2042		P - 1	ina O :	nlot	10/4/2040
RING		No free water observed		aco		Bo	ring Started: 10/4	ı∠U12				-	10/4/2012
IS BO			2822 O'Neal	Lane, Building B			II Rig: Geoprobe			_	ler: J. Os		
프			Baton Ro	uge, Louisiana		Pro	oject No.: EH1251	01		Exh	iibit	A-7	

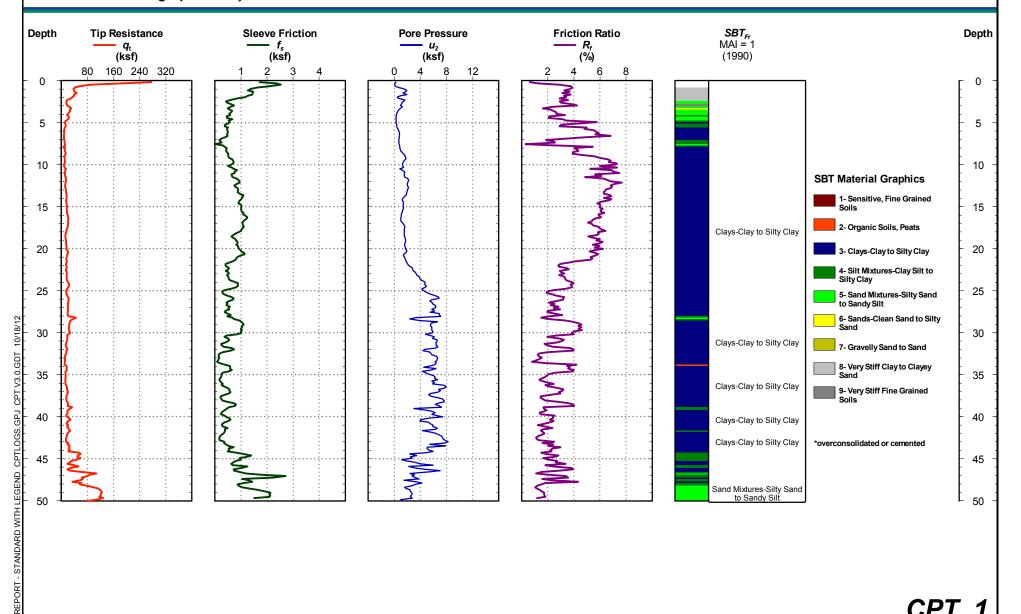
			BORING LO	G NO.	B-0	5					Pa	ge 1 c	of 1
	PR	OJECT: Emerge Center - LSU South Campus		CLIENT:			artners ge, Louisia	ana					
	SIT	E: 7670 GSRI			oaton	Kouţ	je, Louisia	alla					
		Baton Rouge, Louisiana			1		<u> </u>				1		ATTERBERG
	FOG:	LOCATION See Exhibit A-2			(#)	FVEL	EST TS		RENGTH		(%)	(bct)	LIMITS
	GRAPHIC	Latitude: 30.36202° Longitude: -91.14206°			DEPTH (ft)	WATER LEVEL OBSERVATIONS	FIELD TEST RESULTS	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	LL-PL-PI
		DEPTH LEAN CLAY (CL), brown, medium stiff				- 00			8 "	0,			
		,			_		0.75 (HP)	UC	0.97	5	27	94	45-22-23
					_		0.50 (HP)						
	//////	Boring Terminated at 4 Feet			-								
19/12													
SLOGS.EH125101.GPJ TERRACON2012.GDT 10/19/12													
12.GD													
.0ZNC													
RAC													
J TEF													
11.GP,													
12510													
SS.EH													
SLOG													
ÆLL													
NO V													
TERRACON SMART LOG-NO WELL													
MART													
ONS													
RRAC													
ORT													
L REF													
IGINA													
MOR													
FRO													
WATEL		Stratification lines are approximate. In-situ, the transition may b	pe gradual.					<u> </u>	L	<u> </u>			
EPAF						Ι.							
DIFS		cement Method: - Short flight auger	See Exhibit A-3 for descrip See Appendix B for descrip				otes: Ft.:3" Concrete						
-VALI			and additional data, (if any	r).		~ ~							
THIS BORING LOG IS NOT VALID IF SEPARATED FROM ORIGINAL REPORT.		onment Method: ngs backfilled with soil cuttings upon completion.	See Appendix C for explanabbreviations.	ation of symbols	and								
G LO		WATER LEVEL OBSERVATIONS	75			Bor	ing Started: 10/4/	/2012		Bor	ing Com	pleted:	10/4/2012
ORIN		No free water observed	llerr	900	חנ	Dril	Rig: Geoprobe				ler: J. O:		
THIS B			2822 O'Neal	Lane, Building B ige, Louisiana			ject No.: EH1251	01		Exh		A-8	
			20.0100	J., J									

		BORING LO	OG NO. B-	06						Pa	ge 1 c	of 1
PF	ROJECT: Emerge Center - LSU Sout	h	CLIENT: Cole			rtners e, Louisia	.no					
SI	Campus TE: 7670 GSRI		Баю	шк	oug	e, Louisia	IIIa					
	Baton Rouge, Louisiana											
90	LOCATION See Exhibit A-2		£	, l	ONS	F. S	STI	RENGTH	TEST	(%)	_ (g (g	ATTERBERO LIMITS
GRAPHIC LOG	Latitude: 30.36162° Longitude: -91.14141°		DEPTH (ft)	RLE	WATI LE T	FIELD TEST RESULTS	YPE	SSIVI IGTH	(%) N	ATER ENT (IND TE	
GRAF			DEF	WATE	OBSERVATIONS SAMPLE TYPE	표	TEST TYPE	COMPRESSIVE STRENGTH (tsf)	STRAIN (%)	WATER CONTENT (%)	DRY UNIT WEIGHT (pd)	LL-PL-PI
	DEPTH LEAN CLAY (CL), brown, soft			+	00		_	8″	0)			
	<u>=====================================</u>		-	_		0.50 (HP)						
				_								
			-	_		0.25 (HP)	UC	0.45	7.2	37	83	45-23-22
	4.0			_								
	Boring Terminated at 4 Feet											
717												
10/19												
GDT.												
12012												
SLOGS.EH125101.GPJ TERRACON2012.GDT 10/19/12												
TERR												
GP)												
25101												
EH12												
3907												
O WE												
TERRACON SMART LOG-NO WELL												
AKI												
N SIN												
KAC.												
퓠												
SEPARATED FROM ORIGINAL REPORT.												
SINAL												
O S												
Ž Ž												
A I ED	Stratification lines are approximate. In-situ, the transition ma	ay be gradual.										
Advar	ncement Method: 5' - Short flight auger	See Exhibit A-3 for descri			Not							
VALIL		See Appendix B for descr and additional data, (if an	y).	dures	0 F	t.:3" Concrete						
Aband	donment Method: rings backfilled with soil cuttings upon completion.	See Appendix C for explain abbreviations.	nation of symbols and									
0000												
NG L(WATER LEVEL OBSERVATIONS No free water observed	75			Borin	g Started: 10/4/	2012		Bori	ng Com	pleted:	10/4/2012
THIS BORING LOG IS NOT VALID IF	140 free water observed	– liell	aco r		Drill f	Rig: Geoprobe			Drill	er: J. Os	siek	
THIS		2822 O'Nea	l Lane, Building B ouge, Louisiana		Proje	ct No.: EH1251	01		Exh	ibit	A-9	

llerracon

Emerge Center - LSU South Campus 7670 GSRI (Baton Rouge, Louisiana) Project No: EH125101

Cone Penetration Test


CPT 1

Date: Oct. 4, 2012 **Estimated Water Depth:** 0

Rig/Operator: j.b.osiek

Northing: Easting: Elevation: **Total Depth:** 50.0 **Termination Criteria:**

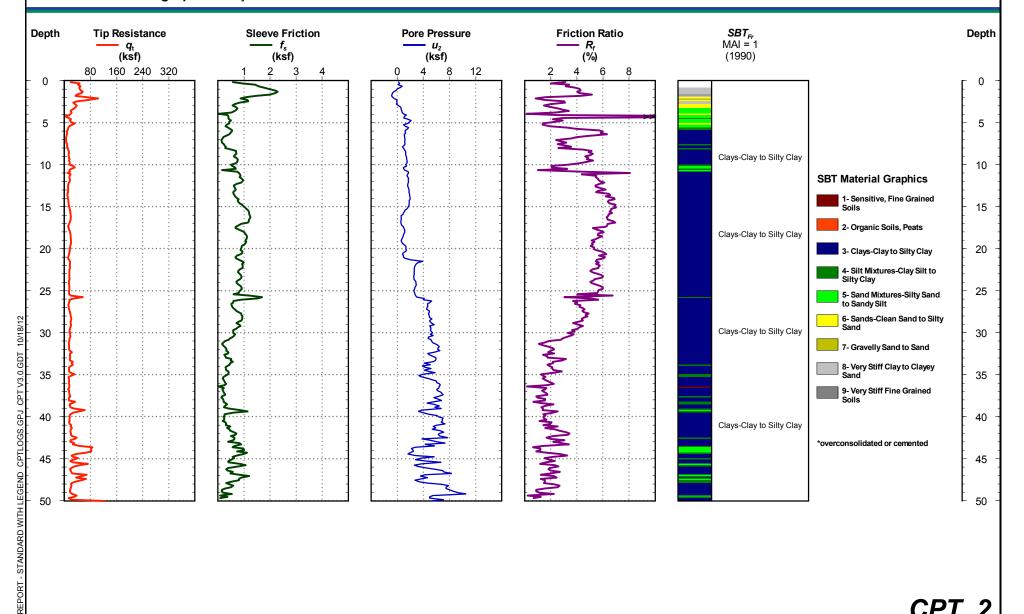
Cone Size:

Electronic Filename: EH125101 CPT 1.cpt

llerracon

Emerge Center - LSU South Campus 7670 GSRI (Baton Rouge, Louisiana) Project No: EH125101

Cone Penetration Test


CPT_2

Date: Oct. 4, 2012 **Estimated Water Depth:** 0

Rig/Operator: j.b.osiek

Northing: Easting: Elevation: **Total Depth:** 50.0 **Termination Criteria:**

Cone Size:

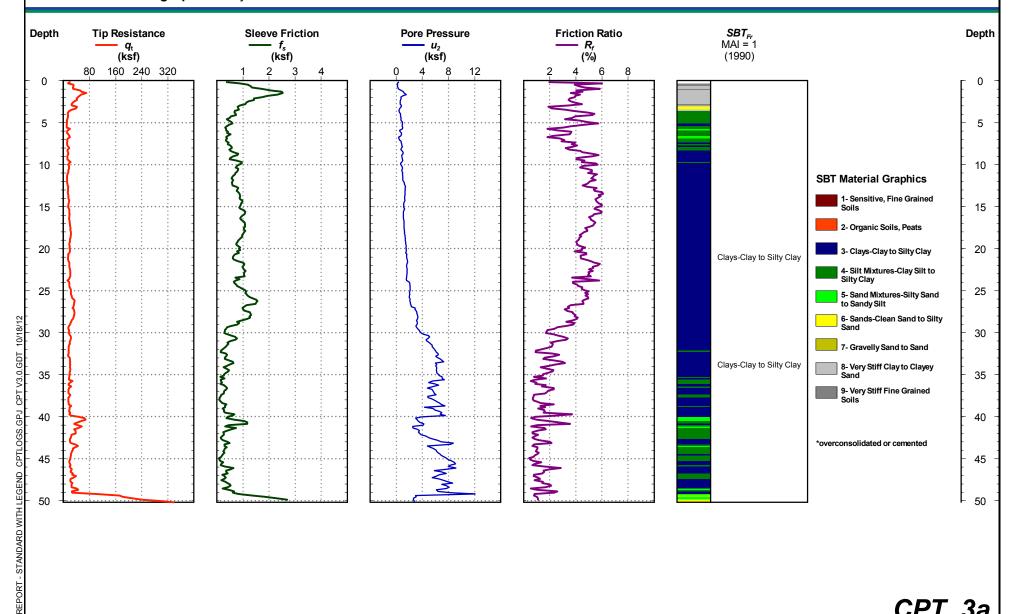
Electronic Filename: EH125101_ CPT 2.cpt

Page 1 of 1

Emerge Center - LSU South Campus 7670 GSRI (Baton Rouge, Louisiana) Project No: EH125101

Cone Penetration Test

CPT_3a


Date: Oct. 4, 2012

Estimated Water Depth: 0

Rig/Operator: j.b.osiek

Northing: Easting: Elevation: **Total Depth:** 50.2 **Termination Criteria:**

Cone Size:

Electronic Filename: EH125101 CPT 3a.cpt

APPENDIX B LABORATORY TESTING AND TEST METHODS

LABORATORY TESTING AND TEST METHODS

The soil samples were delivered to the Terracon laboratory for testing. The project engineer reviewed each field boring log and assigned laboratory testing on selected samples to provide the data necessary for the anticipated designs.

Laboratory testing was accomplished to determine the engineering properties of the soils encountered. These procedures are discussed below.

Index Properties

<u>Moisture Content:</u> Moisture content tests were performed to better understand the classification and shrink/swell potential of the soils encountered. These tests were performed in general accordance with ASTM D 2216. The results of these tests are tabulated within the Laboratory Data section of the attached boring log(s).

<u>Atterberg Limits:</u> Liquid limit (LL) and plastic limit (PL) determinations were performed to assist in classification by the Unified Soil Classification System (USCS). These tests were performed in general accordance with ASTM D 4318. The plasticity index (PI) was calculated as LL - PL for each Atterberg limit determination. The results of these tests are tabulated within the Laboratory Data section of each boring log.

Strength Tests

<u>Unconfined Compression:</u> The undrained shear strength of selected undisturbed soil samples was determined by means of unconfined compression tests (ASTM D 2166). In an unconfined compression test, a cylindrical sample of soil is subjected to a uniformly increasing axial strain until failure develops. For cohesive soils, the undrained shear strength, or cohesion, is taken to be equal to one-half of the maximum observed normal compressive stress on the sample during the test.

The results of the unconfined compression tests are provided as undrained shear strength values within the Laboratory Data section of each boring log. Also shown are the natural water contents and unit dry weights determined as a part of each compression test.

APPENDIX C SUPPORTING DOCUMENTS

AMPLING

EXPLANATION OF BORING LOG INFORMATION

DESCRIPTION OF SYMBOLS AND ABBREVIATIONS

	SNO		Water Level Initially Encountered		(HP)	Hand Penetrometer (tsf)
Auger	Split Spoon X		Water Level After a Specified Period of Time		(T)	Torvane (tsf)
	SER		Water Level After a Specified Period of Time	STS	(b/f)	Standard Penetration Test (blows per foot)
Shelby Tube	Macro Core O		No Water Level Observed	쁜	(PID)	Photo-lonization Detector
l 7		I	els indicated on the soil boring	임	(1.15)	(ppm)
		1 0	e levels measured in the at the times indicated. Water	뿐	(OVA)	Organic Vapor Analyzer (ppm)
No Recovery Ring Sam	Rock Core J H H H H H H H H H H H H H H H H H H	low perme	tions will occur over time. In ability soils, accurate tion of water levels is not with short term water level ns.			

DESCRIPTIVE SOIL CLASSIFICATION

Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

LOCATION AND ELEVATION NOTES

Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area.

	(More than 50% reta	OF COARSE-GRAINED SOILS ined on No. 200 sieve.) ndard Penetration Resistance	CONSISTENCY OF FINE-GRAINED SOILS (50% or more passing the No. 200 sieve.) Consistency determined by laboratory shear strength testing, field visual-manual procedures or standard penetration resistance						
SMS	Descriptive Term (Density)	Std. Penetration Resistance (blows per foot)	Descriptive Term (Consistency)	Undrained Shear Strength (kips per square foot)	Std. Penetration Resistance (blows per foot)				
TERMS	Very Loose	0 - 3	Very Soft	less than 0.25	0 - 1				
Ŧ	Loose	4 - 9	Soft	0.25 to 0.50	2 - 4				
ENG	Medium Dense	10 - 29	Medium-Stiff	0.50 to 1.00	5 - 7				
S	Dense	30 - 50	Stiff	1.00 to 2.00	8 - 14				
	Very Dense	≥ 50	Very Stiff	2.00 to 4.00	15 - 30				
			Hard	above 4.00	≥ 30				

RELATIVE PROPORTIONS OF SAND AND GRAVEL

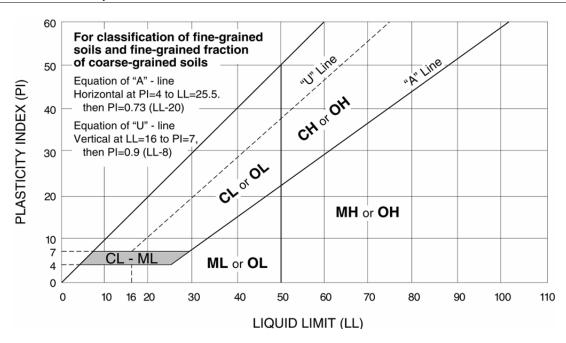
<u>Descriptive Term(s)</u>	Percent of	<u>Descriptive Term(s)</u>	<u>Percent of</u>
of other constituents	Dry Weight	of other constituents	<u>Dry Weight</u>
Trace With Modifier	< 15 15 - 29 > 30	Boulders Cobbles Gravel Sand Silt or Clay	Over 12 in. (300 mm) 12 in. to 3 in. (300mm to 75mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to 0.075mm Passing #200 sieve (0.075mm)

RELATIVE PROPORTIONS OF FINES

Descriptive Term(s) of other constituents	Percent of Dry Weight	<u>Term</u>	Plasticity Index
of other constituents	<u>Dry weight</u>	Non-plastic	0
Trace	< 5	Low	1 - 10
With	5 - 12	Medium	11 - 30
Modifier	<u>≥</u> 12	High	<u>≥</u> 30

GRAIN SIZE TERMINOLOGY

PLASTICITY DESCRIPTION


UNIFIED SOIL CLASSIFICATION SYSTEM

	5	Soil Classification			
Criteria for Assigr	ning Group Symbols	and Group Names	s Using Laboratory Tests ^A	Group Symbol	Group Name ^B
	Gravels:	Clean Gravels:	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel F
	More than 50% of	Less than 5% fines ^C	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel F
	coarse fraction retained	Gravels with Fines:	Fines classify as ML or MH	GM	Silty gravel F,G,H
Coarse Grained Soils: More than 50% retained	on No. 4 sieve	More than 12% fines ^C	Fines classify as CL or CH	GC	Clayey gravel F,G,H
on No. 200 sieve	Sands:	Clean Sands:	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	SW	Well-graded sand I
011 140. 200 01040	50% or more of coarse fraction passes No. 4 sieve	Less than 5% fines D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand I
		Sands with Fines: More than 12% fines ^D	Fines classify as ML or MH	SM	Silty sand G,H,I
			Fines classify as CL or CH	SC	Clayey sand G,H,I
	Silts and Clays: Liquid limit less than 50	Inorganic:	PI > 7 and plots on or above "A" line J	CL	Lean clay K,L,M
			PI < 4 or plots below "A" line J	ML	Silt K,L,M
		Organic:	Liquid limit - oven dried	OL	Organic clay K,L,M,N
Fine-Grained Soils: 50% or more passes the			Liquid limit - not dried	OL	Organic silt K,L,M,O
No. 200 sieve		Inorganic:	PI plots on or above "A" line	CH	Fat clay K,L,M
	Silts and Clays:	inorganic.	PI plots below "A" line	MH	Elastic Silt K,L,M
	Liquid limit 50 or more	Organic:	Liquid limit - oven dried < 0.75	ОН	Organic clay K,L,M,P
		Organic.	Liquid limit - not dried < 0.75	011	Organic silt K,L,M,Q
Highly organic soils:	Primarily	organic matter, dark in o	color, and organic odor	PT	Peat

^A Based on the material passing the 3-inch (75-mm) sieve

^E Cu =
$$D_{60}/D_{10}$$
 Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

Q PI plots below "A" line.

^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.

^c Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.

D Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

 $^{^{\}text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^H If fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.

^K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{^{\}text{L}}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

 $^{^{}N}$ PI \geq 4 and plots on or above "A" line.

 $^{^{\}text{O}}$ PI < 4 or plots below "A" line.

P PI plots on or above "A" line.