Exhibit I. Tamanend Business Park West Site Potable Water Infrastructure Upgrade Letter \& Map

Tamanend Business Park West Site Potable Water Infrastructure Upgrade Letter \& Map

CSRS, INC.
6767 Perkins Road, Suite 200 Baton Rouge, Louisiana 70808

Phone: (225) 769-0546
Fax: (225) 767-0060

June 14, 2016
Mr. Michael Tomlinson
St. Tammany Economic Development Foundation
21489 Koop Drive, Suite 7
Mandeville, LA 70471
Re. Tamanend Business Park West Site Potable Water System Cost Estimate CSRS Job No. 214094

Dear Mr. Tomlinson:

According to correspondence with local utility officials, the Tamanend Business Park West site located in St. Tammany Parish, Louisiana currently does not have access to an existing potable/process water line to service the site. A plan to improve and upgrade the water infrastructure is in place.
A sewer and water master plan has been developed by Richard C. Lambert Consultants. In addition, a sewer and water design plan has been provided for the Tamanend Business Park West site and infrastructure upgrades are currently being constructed.

Regarding the potable water capacity, the system has been designed and partially constructed, but is currently not in active use. A Tamanend Water System Storage, Production \& Pressure Recommendations report has been provided by Principal Engineering, Inc. The report shows that the proposed water system will meet LED requirements.
Thank you for the opportunity to assist you in this project. Should you have any questions or require additional information, feel free to contact me.

Sincerely,

Water Utility Provider Survey (page 1 of 2)

Tamanend Business Park West Site Potable Water Infrastructure Upgrade Letter \& Map

Site Map 1

Date:	06/01/2016		
Provider Name:	Tammany Utilities		
Address:	21454 Koop Drive		
City:	Mandeville		
State:	LA	Zip Code:	70471

Site Map 2

Contact Information

Name:	Tim Brown
Phone:	(985) 898-2535
Email:	tbrown@stpgov.org
	Utility Manager

Please provide the distance in feet to the nearest potable or process water distribution line to service this site.
100

What is the size (inches in diameter) of the nearest line?

Is potable or process water currently available at this site?
(Yes

- No

Static \square Residual
0

What are the pressures of the water line at or nearest to this site?
groundwater
Source of potable or process water (lake, well, other source)
What is the total potable/process capacity of the existing water system in millions of gallons per day (MGD)

0

What is the current average daily use of the existing water system in millions of gallons per day (MGD)
0 0

What is the peak demand on the existing water system in millions of gallons perday (MGD)
What is the excess capacity of the existing water system in millions of gallons per day (MGD)
0

500,000

Capacity of closest elevated potable water storage tank (gallons)
Distance to closest elevated potable water storage tank in miles 0.04
Distance to appropriate booster station in miles 0

Is or will there be adequate pressure and flow at site to combat fires?
© Yes
C No

[^0]
Tamanend Business Park West Site Potable Water Infrastructure Upgrade Letter \& Map

Tamanend Water System Storage, Production, \& Pressure RECOMMENDATIONS

PREPARED FOR:

CALDWELL

Caldwell Tanks, Inc.

JULY 2014

PREPARED BY:
Principal Engineering, Inc.

1011 N. Causeway Blvd., Suite 19
Mandeville, LA 70471
Ph. (985)624-5001 - Fax (985)624-5303

PURPOSE

This document summarizes a limited study conducted by Principal Engineering, Inc., on the proposed water storage, production, and distribution system for the Weyerhauser development, Tamanend. The study purpose is to provide the developer with data to validate the selected storage capacity/height and distribution network pipe diameters or make revisions to same in the interest of better economic outcome. No deficiency in the current design is implied, and the parcels as located on the master plan prepared by Reich Associates are constructible with respect to water supply, but it is possible that certain modifications would lessen the cost of building construction and increase usable land area. Additionally, no water supply design well capacity has been selected; this document presents a rationale and recommendation for water production capacity.

EXECUTIVE SUMMARY

Within the framework of National Fire Protection Association (NFPA) regulations adopted by the State of Louisiana, and the physical behavior of a water system; storage capacity, production capacity, water pressure, pipe diameters, and building type/use are interconnected. Modification to one element's characteristics may place constraints on another element. The potential variations are endless. As such, a set of design assumptions have been selected, and the recommendations made based on those assumptions. Matrices of broader results are included later in this document for the interested reader (the matrices are limited in scope for reasonableness).

1. Tank Capacity. The assumed water storage tank capacity of 500,000 gallons is validated. The controlling case is the demand created by fire suppression sprinklers in a warehouse (1,860 gpm for 90 minutes) during a period of high domestic usage. No auxiliary water storage is required for the assumed 60,000-100,000 SF warehouse (4,000 SF sprinkler area plus hose stream, ordinary hazard), when the proposed 500,000 gallon tank is provided, and the recommended well capacity is installed. Demand can vary greatly based on materials stored, method of storage, rack height, sprinkler type, etc.; used here was a conservative configuration.
2. Well Production Capacity.
a. Primary Capacity is recommended to be $1,000 \mathrm{gpm}$, although in no case should it be less than $\mathbf{7 5 0} \mathbf{~ g p m}$. The two controlling cases for well capacity are 1) domestic demand when the storage tank is out of service; and 2) fire demand triggered at the end of a maximum domestic use day (for a storage capacity of 500,000 gallons). Peak domestic (non-fire) hourly demand at full build-out is estimated at 1,235 gpm in summer, and 987 gpm in winter. While tank maintenance is performed, 1000 gpm production capacity will maintain system pressure during the
winter months at all times of day. It is not recommended to size the primary well down, and rely on the auxiliary and primary sources in combination for this purpose, as redundancy is lost. If possible, it is recommended that two $\mathbf{5 0 0}$ or $\mathbf{6 0 0} \mathbf{~ g p m}$ wells be installed as the primary source for maximum redundancy, vs. a single well of 1000 gpm capacity. Depending on the ultimate build out of Phase 1, well construction could be phased.
b. Auxiliary Capacity is recommended to be $\mathbf{5 0 0} \mathbf{~ g p m}$. This value is an estimate of the most water the existing Coroner's well can produce with a pump and controls upgrade. For higher capacity than 500 gpm, redrilling would be required, negating the benefit of using that existing facility. The capacity will be adequate to provide redundancy during Phase I development; however, as the demand increases, and particularly if a single $\mathbf{1 0 0 0}$ gpm or $\mathbf{7 5 0}$ gpm well is installed as the primary source, it will be inadequate during days of peak summer domestic demand (when in redundant use). The 500 gpm auxiliary source can likely supply winter domestic demand at build-out, but in no case can fire demand be met.
3. Pressure. It is recommended to maintain the proposed HWL height of 140 feet, and to increase the water main diameters serving the office/warehouse parcels from 10" to 16". Installation of a fire pump in the major buildings can be avoided (for most usage cases) with this diameter increase. Raising the tank elevation sufficiently to provide adequate sprinkler head pressure at the aforementioned warehouse fire flow without a pump, and using the 10 " pipe diameter would require tank height approaching 200 feet; this is considered impractical. With the tank level depleted to 120 feet during a day's use, pressure and flow have been validated as adequate at the most hydraulically distant fire hydrant from the tower, at the proposed pipe diameters.
4. Economic Interpretation of \#1 thru \#3.
a. Storage: Employing the recommended 500,000 gallon storage tank capacity and 1000 gpm production capacity will eliminate the need for fire water ground storage tanks located adjacent to each of the office and warehouse buildings. For reference, a single 50,000 gallon steel water storage tank would cost over $\$ 100,000$. It is conceivable that each of the 12 warehouse/office facilities would require such a tank, in addition to any single large commercial area in the Town Center.
b. Production: As primary production, two wells of smaller capacity are desired vs. one well of higher capacity. A single 500 gpm well can be budgeted at $\$ 450,000$; and a single 1000 gpm well can be budgeted at
\$700,000 (bare costs, well and pump only). The higher total construction cost of two smaller wells (\$900K vs. \$700K) negates risk of required future additional upgrade to the auxiliary source as build-out occurs. It is possible that during DHH review, this two well primary supply approach will be mandated (or other solution that delivers complete redundancy).
c. Pressure: Increasing the water main distribution diameter will cost an estimated additional \$20 per linear foot (nominal additional cost for Phase 1, and \$114,000 additional cost during future build out for 5700 LF of distribution mains to the warehouses). However, this will eliminate the need for a fire pump in most potential facility uses. The estimated per parcel construction savings (assume 12 warehouses/offices plus town center and campus) is $\$ 25,000$ in upfront cost, plus the O\&M necessary to ensure that equipment's reliable operation.
d. No Action Required: As previously stated, no deficiency in the distribution design is implied. Should the recommended 1000 gpm production capacity and pipe diameter increase not be implemented, the development will not be technically hindered; but building construction will become more expensive as described above.

LIMITATIONS

Water demands have been estimated using the rendered plan produced by Reich Associates, and not on definitive information. It is possible that changes to the Tamanend layout or land usage could render the information contained herein invalid. Additionally, a wide variety of fire suppression sprinkler types, configurations, design methods, and building characteristics can produce required flows and pressures above or below what is presented herein. Principal Engineering has made an effort to present a reasonably conservative envelope, but cannot guarantee that if the recommendations are followed, that certain building owners will not require fire pumps. Lastly, the cost figures are for comparison purposes only, and are based on past experience, not proposed pricing by Contractors. As such, the developer should make independent investigation to verify accuracy.

TABULATED RESULTS OF ANALYSIS

Selected tables of results are presented below.
Table 1, Domestic Use Values: This table presents water use that can be expected upon full build-out of the property, according to the Reich Associates plan. Hourly max flow during winter months has been assumed as (base flow) $\times 0.8 \times 2.5$.

1 - Domestic Use Values

	Peaking Factor	Flow (gpd)	Flow (gpcd)	Flow (gpm)
Base	N/A	711,060	94.5	493.8
Winter	0.8	568,848	75.6	-
Summer	1.3	924,378	122.8	-
Daily Max	1.65	$1,173,249$	155.9	-
Hourly Max	2.5	-	236.2	1,235

Table 2,Volume Deficit for Fire Demand Duration of 90 min.: This table presents the deficit in available water volume for various well production capacities and various building hazard classifications. Fire sprinkler demands were estimated for warehouse/office buildings of varying hazard classifications.

2 - Volume Deficit (gal) for Fire Demand of 90 minutes
Fire Demand varies \& Domestic Demand $=\mathbf{1 , 2 3 5} \mathrm{gpm}$

	Water Well Capacity (gpm)							
Hazard Class	$\mathbf{5 0 0}$	$\mathbf{7 5 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 5 0 0}$	$\mathbf{3 0 0 0}$	
Ordinary 1	124,650	102,150	79,650	34,650	N/A	N/A	N/A	
Ordinary 2	142,650	120,150	97,650	52,650	7,650	N/A	N/A	
Extra Hazard 1	197,550	175,050	152,550	107,550	62,550	17,550	N/A	
Extra Hazard 2	233,550	211,050	188,550	143,550	98,550	53,550	8,550	

Table 3, Volume Deficit for Peak Domestic Flow: This table presents the deficit in availalble water volume for various well production capacities during a peak domestic use day. The maximum expected hourly flow is assumed to be maintained until the maximum expected daily production for a peak day is reached (calculated to be 16 hr .).

3 - Volume Deficit (gal) for Peak Domestic Flow

($1,235 \mathrm{gpm}$ for 16 hr .)

	Water Well Capacity (gpm)						
$\mathbf{5 0 0}$	$\mathbf{7 5 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 5 0 0}$	$\mathbf{3 0 0 0}$	
	705,600	465,600	225,600	0	0	0	0

Table 4, Volume Deficit for Peak Domestic + Fire Demand: This table sums the values of volume deficit in Tables 2 and 3. This models a fire sprinkler demand at the design office/warehouse building on a peak domestic usage day.

4 - Volume Deficit (gal) for Peak Domestic Flow of 16 hours + Fire Demand

	Water Well Capacity (gpm)						
Hazard Class	$\mathbf{5 0 0}$	$\mathbf{7 5 0}$	$\mathbf{1 0 0 0}$	$\mathbf{1 5 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{2 5 0 0}$	$\mathbf{3 0 0 0}$
Ordinary 1	830,250	567,750	305,250	34,650	0	0	0
Ordinary 2	848,250	585,750	323,250	52,650	7,650	0	0
Extra Hazard 1	903,150	640,650	378,150	107,550	62,550	17,550	0
Extra Hazard 2	939,150	676,650	414,150	143,550	98,550	53,550	8,550

Tables 5A - 5C, Design Parameters for Various Pipe Diameter Configurations: This series of tables estimates the instantaneous flow of water to the most hydraulically distant office/warehouse parcel, given varying pipe diameters and tank water levels. The highlighted values are the flow that can be expected for the given configuration at a point 40 ft above ground elevation (assumed roofline), at a residual pressure of 30 psi . Pressure
loss of 10 psi has been assumed in the fire suppression riser piping. The tank level shown represents a tank HWL height 20 feet higher (120 in the table is a 140' tank), to account for water volume depletion. Topography has been assumed as flat. Criteria is the $1,860 \mathrm{gpm}$ fire flow mentioned above.

5A - Design Parameters for 16" Main Pipe \& 10" North Spur Pipe

Tank Level (ft)	Pipe Section	Velocity (ft/s)	Flow (gpm)
120	$16^{\prime \prime}$ Main Pipe	1.87	1,629
	$10^{\prime \prime}$ Spur Pipe	4.80	1,174
140	$16^{\prime \prime}$ Main Pipe	2.51	2,179
	$10^{\prime \prime}$ Spur Pipe	6.42	1,570
170	$16^{\prime \prime}$ Main Pipe	3.26	2,834
	$10^{\prime \prime}$ Spur Pipe	8.35	2,042
180	$16^{\prime \prime}$ Main Pipe	3.48	3,024
	10 " Spur Pipe	8.91	2,179

5B - Design Parameters for 16" Main Pipe \& 12" North Spur Pipe

Tank Level (ft)	Pipe Section	Velocity (ft/s)	Flow (gpm)
120	$16^{\prime \prime}$ Main Pipe	2.57	2,234
	$12^{\prime \prime}$ Spur Pipe	4.57	1,610
140	$16^{\prime \prime}$ Main Pipe	3.44	2,987
	$12^{\prime \prime}$ Spur Pipe	6.11	2,153
170	$16^{\prime \prime}$ Main Pipe	4.47	3,886
	$12^{\prime \prime}$ Spur Pipe	7.95	2,801
180	$16^{\prime \prime}$ Main Pipe	4.77	4,145
	$12^{\prime \prime}$ Spur Pipe	8.48	2,988

5C - Design Parameters for 16" Main Pipe \& 16" North Spur Pipe

Tank Level (ft)	Pipe Section	Velocity (ft/s)	Flow (gpm)
120	$16^{\prime \prime}$ Main Pipe	5.88	5,112
	$16^{\prime \prime}$ Spur Pipe	5.88	5,112
140	$16^{\prime \prime}$ Main Pipe	7.88	6,850
	$16^{\prime \prime}$ Spur Pipe	7.88	6,850
170	$16^{\prime \prime}$ Main Pipe	10.23	8,893
	$16^{\prime \prime}$ Spur Pipe	10.23	8,893
180	$16^{\prime \prime}$ Main Pipe	10.92	9,493
	$16^{\prime \prime}$ Spur Pipe	10.92	9,493

DESIGN PARAMETER CONFIRMATION

1. The elevated storage tank will be designed to a capacity of 500,000 gallons, with a high water level of 140 feet above foundation elevation.
2. A single well of 500 gpm will be designed at the tank site. A future 500 gpm well shown on the drawings will be required as Tamanend develops and water demand increases. An upgrade to the Coroner's well will be designed to flow 500 gpm .

Approved: \qquad Date: \qquad
Signature

Printed Name: \qquad

[^0]: Is a plan underway to improve services at or near this site within the next year? If so, please provide anticipated upgrades, location, and time for implementation.
 Facility is still under construction. The pump and well tests have not been completed. As-built plans have not yet been provided.

