

LEDC HORNSBY TRACT DRAINAGE INVESTIGATION
F&T Project No. 231269

HYDROLOGIC AND HYDRAULIC REPORT

Prepared By:

Forte and Tablada, Inc.
1234 Del Este Ave. – Suite 601
Denham Springs, LA 70726
225-665-1021

July 8th, 2025

Table of Contents

1. INTRODUCTION	3
2. METHOD OF ANALYSIS	8
3. UPSTREAM AND DOWNSTREAM MODELING LIMITS	13
4. VARIABLES, COEFFICIENTS, AND MODELING STRATEGIES	18
5. DISCUSSION	21
6. CONCLUSION	26

LIST OF TABLES

1. AVERAGE RAINFALL TOTALS FOR MODELED STORM EVENTS	15
2. NLCD LAND COVER MANNING'S VALUES (NLCD 2021)	20
3. HEC-RAS COMPUTATIONAL OPTIONS	21

LIST OF FIGURES

1. PROPOSED PROJECT SITE	6
2. 2D AREA OF HEC-RAS MODEL	7
3. LANDCOVER DATA FOR HMS MODEL	9
4. POTENTIAL LAYOUT ALTERNATIVE 1 (MAXIMUM ALLOWABLE FILL AREA WHILE STILL MEETING FILL REQUIREMENTS)	10
5. POTENTIAL LAYOUT 2 (1,500,000 SQ FT BUILDING AND REQUIRED FILL MITIGATION POND)....	11
6. FEMA FLOOD BOUNDARY MAP	12
7. HORNSBY UPSTREAM BOUNDARY LOCATION	14
8. HORNSBY DOWNSTREAM BOUNDARY LOCATION	15
9. 2D PRECIPITATION (INCHES) FOR 100-YEAR, 24-HOUR RAINFALL EVENT	16
10. RUNOFF FROM HMS.....	17
11. MANNINGS N VALUE LAYER DISTRIBUTION	19
12. INFILTRATION VALUES PER TERRAIN	20
13. WSE COMPARISON FOR 100-YEAR EVENT FOR EXISTING AND PROPOSED CONDITIONS	22
14. WSE FOR 100-YEAR EVENT FOR EXISTING AND 2 ND PROPOSED CONDITIONS.....	23
15(a-d). WSE DIFFERENCE (EXISTING VS. PROPOSED 1&2) FOR NORTHERN AND SOUTHERN PORTIONS OF MODEL.....	24-25

LIST OF ATTACHMENTS

1. MODEL SCENARIO PRECIPITATION HYETOGRAPHS.....
2. NRCS SOIL REPORT.....
3. WATER SURFACE COMPARISON FULL MAPS
4. HECRAS INFILTRATION VALUES.....

1. INTRODUCTION

The City of Walker, and more specifically for this project, Hornsby Creek Watershed, has been the subject of flooding issues even before the 2016 flood that devastated Livingston Parish. On a regular basis, Hornsby Creek exceeds its capacity while conveying the water it needs to drain. The goal of this investigation is to verify the impacts of a potential development to the surrounding watershed. According to Parish regulations, the property is being elevated such that any new construction can be a minimum of 2' above BFE. Additionally, a pond is being dug around the elevated ground with an equivalent volume of dirt moved to accommodate any fill mitigation requirement, and ensure no downstream impact from the proposed development area.

- **Preparers' name, company name, telephone number, and email:**

Drake W. Cowart P.E., Forte and Tablada, (225)-665-1021,

Email: dcowart@forteandtablada.com

- **Location and description of the watershed and study area:**

The project is located in the Hornsby Creek watershed within the city limits of Walker, LA. This watershed includes some developed urban areas, rural developed areas, and large sections of undeveloped tracts of land spaced throughout. The proposed development will be required to have the building footprint above the BFE and thus a large volume of fill will need to be mitigated on site via fill mitigation detention. The pond will be located in an undeveloped area on the northern side of Industry Way behind the existing businesses. The proposed pond geometry will change between alternatives, but will retain an invert elevation of 37.5'. The proposed pond will need to be an appropriate size in order to offset the parish's fill mitigation requirements. These ponds will connect into an existing 25' wide channel, located immediately to the south of the proposed pond, which flows into Hornsby Creek. According to NWI Wetlands data, dated May 2018, there are existing wetlands on the property.

- **Name and type of project:**

LEDC Hornsby Tract. The project aims to identify if the proposed improvements will have any negative impacts on the surrounding area.

- **Describe and define study limits:**

Figure 1 shows the proposed project locations. Hornsby Creek is located in the central part of Livingston Parish. The project includes two proposals. The first involves approximately 32 acres of detention area accompanying the associated development while the second involves approximately 14 acres of detention area to support a smaller development area. The proposed detention area will tie into an existing channel which is located to the south of the proposed pond.

- **Locate and describe where flood discharges were estimated:**

The modeling and analysis determined the estimated changes in surface runoff patterns, flood levels, and flood inundation extents throughout the watershed as shown in Figure 2.

- **Name all associated USGS gaging stations:**

No applicable USGS gaging stations are available at this location. Next closest station is located downstream on the Amite River at Port Vincent, LA.

- **Describe the climatic data, hydrologic features, and any other information that supports the hydrologic analyses:**

The hydrologic modeling approach used the USACE HEC-HMS software to compute rainfall hyetographs for five different storm events. The TR-55 methodology was used to develop these hyetographs along with NOAA Atlas 14 Rainfall Data. Initial abstractions and curve numbers were derived from the available National Land Cover Database (NLCD) and National Resources Conservation Service (NRCS) Soils data.

- **Describe the watercourse and location of investigation:**

Hornsby Creek is a waterway within the Colyell Creek watershed that flows into the Amite River. The average slope of the waterway is approximately 0.002 ft/ft, while the overland slope averages 0.0011 ft/ft. The creek primarily flows through rural areas but intersects more developed regions within the City of Walker, particularly around U.S. Hwy 190 near South Satsuma Road, near the approximate center of the watershed. The proposed improvement areas are generally wooded, undeveloped zones located adjacent to or along the flow path of Hornsby Creek.

- **Name for whom the report is being prepared:**

City of Walker, NFIP Community ID #220121

- **Date of report and topographic data used in model:**

Terrain data is based on LiDAR data collected by LADOTD for the Amite River Watershed in 2018. Lidar Data was supplemented with survey data collected by Forte & Tablada as part of this project for the site north of Industry Way to the property boundary at Hornsby Creek.

- **Describe the scope of investigation including the alternatives analyzed and evaluated:**

Multiple storm events based on available NOAA Atlas 14 data were evaluated for different scenarios including 5-year, 10-year, 25-year, 50-year, and 100-year. These events were used to analyze both the pre-and-post conditions of the watershed and potential improvements.

- **Describe the scope of the analysis:**

The model encompasses approximately 5.78 square miles of the Horsby Creek watershed, starting approximately 1.1 miles north of US 190 and ending on the north side of Interstate 12. The scope of the project focuses on evaluating and mitigating any potential impacts from the proposed development. During the preliminary investigation of the project's original scope, a 32-acre pond size was used based on the fill mitigation requirements for the parish assuming the site would be filled entirely to the BFE.

- **Identify any existing studies or any history of work on the watercourse in the vicinity of the project including past flooding events:**

This study was calibrated using an existing FEMA HEC-2 Model which utilized relatively older LiDAR data that did not have the definition of modern available data for the area. Although this LiDAR data is relatively old, it lined up well with modern modeling efforts, allowing there to be consistent calibration.

LEDC Hornsby Tract
City of Walker, LA

Figure 1 – Proposed Project Site

LEDC Hornsby Tract City of Walker, LA

*Red and blue arrows represent culverts and SA-2D connections respectively

Figure 2 – 2D Area of HEC-RAS Model

2. METHOD OF ANALYSIS

Hornsby Creek is a tributary of Colyell Creek that flows through the outskirts of the City of Walker, through Livingston Parish. To better understand and manage the creek's behavior, a 2D hydraulic model was developed using GeoHEC-RAS version 5.1 software and ran on the USACE HEC-RAS Engine version 6.4.1. This software is based on the U.S. Army Corps of Engineers' (USACE) HEC-RAS program and provides equivalent outputs. The 2D model covers approximately 5.78 square miles, or 3700 acres, stretching from approximately 1.1 miles north of US 190 to the northern side of Interstate 12. The 2D model was chosen due to the extremely flat terrain to the north of US 190 as well as how water was able to jump back and forth between the tributaries in their overbanks. Figure 2 shows the limits of the 2D model in GeoHEC-RAS. The model includes all relevant culverts and bridges that Hornsby Creek flows through. To estimate rainfall in the area, a separate model using USACE HEC-HMS version 4.10 software was developed. The NRCS method (SCS Method) was used to generate rainfall hyetograph for rain on mesh analysis in HEC-RAS. NOAA Atlas 14 rainfall depths were used for these calculations. In addition, NRCS Soils Data along with a Land Cover Data layer developed based on observed land types were used to estimate the associated infiltration across the watershed. The watershed consisted of almost entirely Type D and C/D soils. Figure 3 depicts the landcover data for the HEC-HMS model of the area. Along with the associated rainfall data that was used for the RAS analysis, the HMS model was also used to generate flow hydrographs for the upper limits of the HECRAS model.

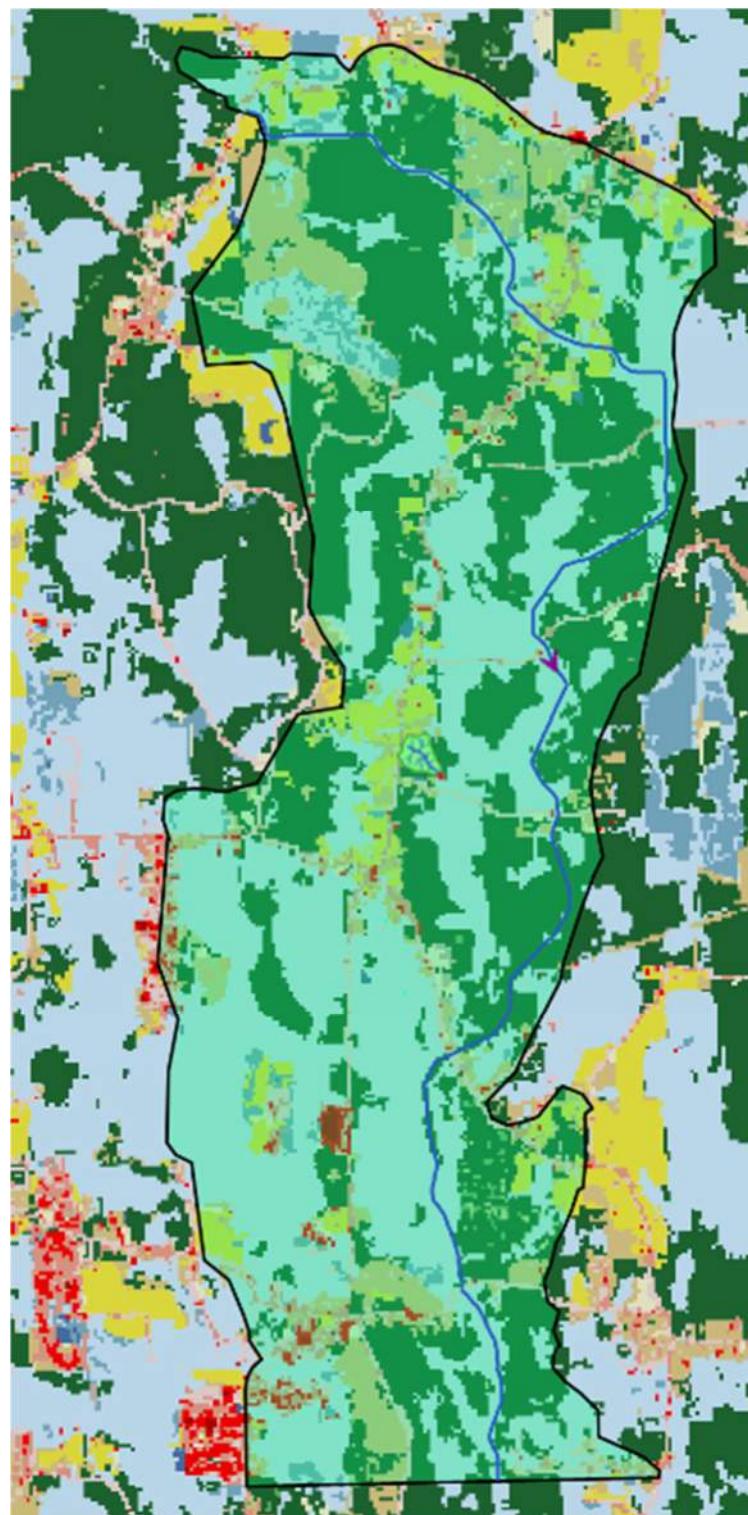


Figure 3 – Landcover Data for HMS Model

The model was developed to simulate five different hydrologic recurrence intervals for three scenarios: the "existing condition" and two different "proposed conditions." The existing conditions reflect the current state of the watershed, based on collected survey data, LiDAR data, and other visual information used to calibrate the model to known flood return events. The first iteration of the potential development aims to maximize the area of raised ground and includes a 32 acre pond, which was the sized based off fill mitigation requirements. The second iteration instead aims to minimize the raised ground to only accommodate an approximately 1.5 million square foot building and a reduced pond footprint of approximately 14 acres. These two proposed developments are shown in Figures 4 and 5. The pond for both potential developments will have an invert of 37.5' and will link directly into the adjacent ditch on the southern end of the project area, which leads to Hornsby Creek.

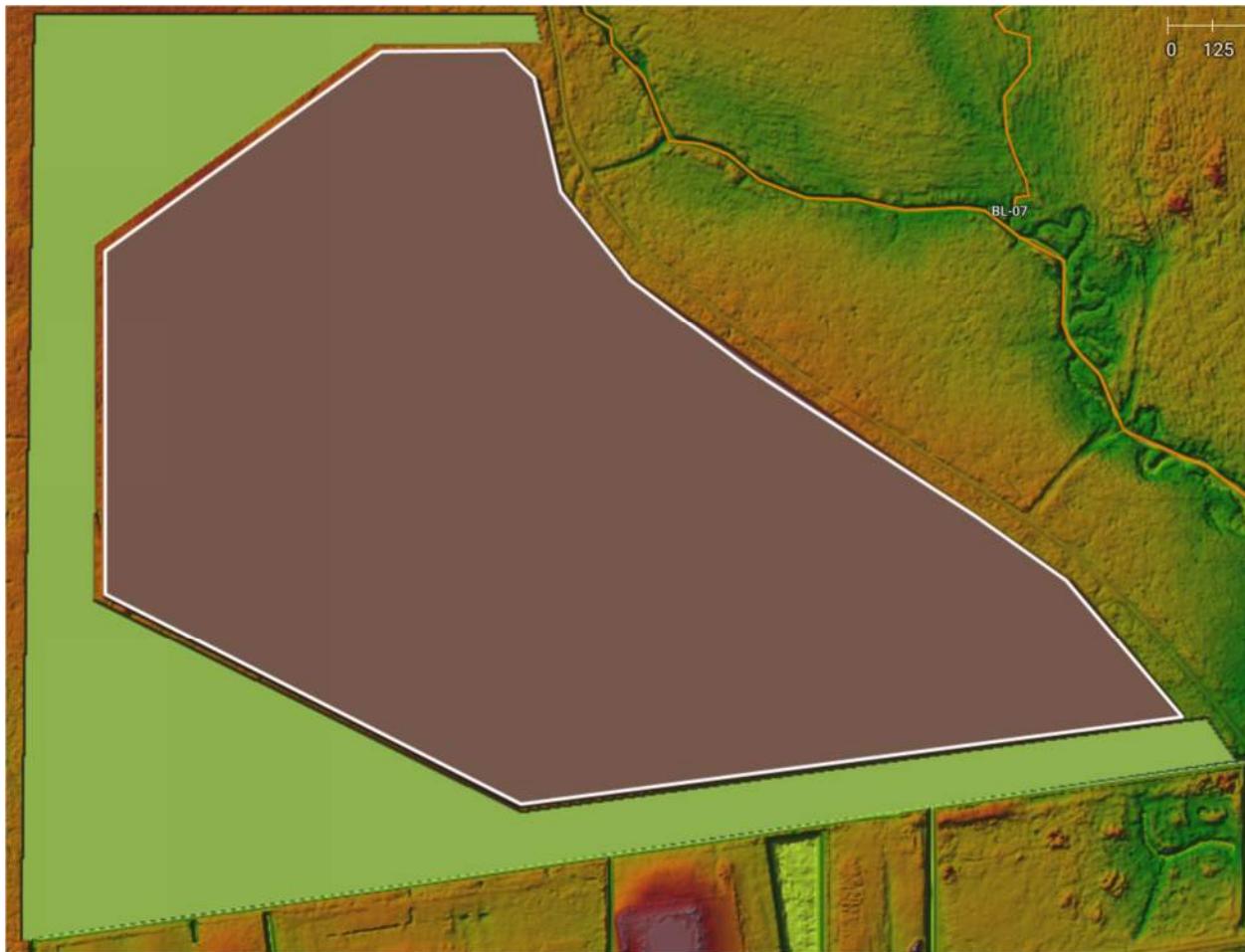


Figure 4 – Potential Layout Alternative 1 (Maximum Allowable Fill Area While Still Meeting Fill Mitigation Requirements)

Figure 5 – Potential Layout 2 (1,500,000 sq ft Building and Required Fill Mitigation Pond)

Figure 6 displays the FEMA Flood Boundary Map for the existing watershed. The watershed is classified as two different flood zones: Flood Zone AE and Flood Zone A, with a large portion of the model falling into Flood Zone AE. It should also be noted that the FEMA flood levels north of US-190 on the West side have been assumed to be incorrect. The flood elevations at that location are assumed to have been carried over from an adjacent watershed and do not make logical sense in the context of this watershed.

LEDC Hornsby Tract
City of Walker, LA

Figure 6 – FEMA Flood Boundary Map

Five different 24-hour storm intensities were simulated across two different geometry scenarios in the 2D model: the “existing conditions” and “proposed conditions” model. The storm events included the 5-year, 10-year, 25-year, 50-year, and 100-year recurrence intervals. The following scenarios were created in the program:

- **5-year Storm:**
 - **Existing Conditions: LEDC_EX_05**
 - **Proposed Conditions: LEDC_PR01_05**
 - **Proposed Conditions: LEDC_PR02_05**
- **10-year Storm:**
 - **Existing Conditions: LEDC_EX_10**
 - **Proposed Conditions: LEDC_PR01_10**
 - **Proposed Conditions: LEDC_PR02_10**
- **25-year Storm:**
 - **Existing Conditions: LEDC_EX_25**
 - **Proposed Conditions: LEDC_PR01_25**
 - **Proposed Conditions: LEDC_PR02_25**
- **50-year Storm:**
 - **Existing Conditions: LEDC_EX_50**
 - **Proposed Conditions: LEDC_PR01_50**
 - **Proposed Conditions: LEDC_PR02_50**
- **100-year Storm:**
 - **Existing Conditions: LEDC_EX_100**
 - **Proposed Conditions: LEDC_PR01_100**
 - **Proposed Conditions: LEDC_PR02_100**

3. UPSTREAM AND DOWNSTREAM MODELING LIMITS

The model established two boundary conditions, as shown in Figures 7 and 8 on the following page. The northern boundary conditions utilizes a flow hydrograph generated from the HEC-HMS model to accurately capture the unsteady flow at the upstream boundary of Hornsby Creek and by normal depth at the downstream boundary. The downstream boundary condition was set to normal depth at a slope of .01067 ft/ft based existing terrain/stream data. A sensitivity analysis was done on the slope as part of the calibration process to determine the effects of adjustments to this slope to the water surfaces within the model. It was determined that alterations to the slope associated with the downstream boundary would not propagate upstream enough to affect the results in the benefiting areas.

LEDC Hornsby Tract
City of Walker, LA

Figure 7 – Hornsby Upstream Boundary Location

Figure 8 – Hornsby Downstream Boundary Location

Figure 9 shows the precipitation rates used for the 100-year, 24-hour rainfall event. Precipitation data for all other rainfall events are shown below in Table 1. These hyetographs were generated in HEC-HMS and then input into the 2D HEC-RAS model to simulate upstream flow into our 2D model area. The same precipitation values, listed in Table 1 below, were applied to both the existing and proposed conditions.

NOAA Atlas 14 Average Rainfall Totals	
Event	Rainfall Total (in.)
5 Year 24 Hr	6.40
10 Year 24 Hr	7.56
25 Year 24 Hr	9.28
50 Year 24 Hr	10.70
100 Year 24 Hr	12.20

Table 1: Average Rainfall Totals for Modeled Storm Events

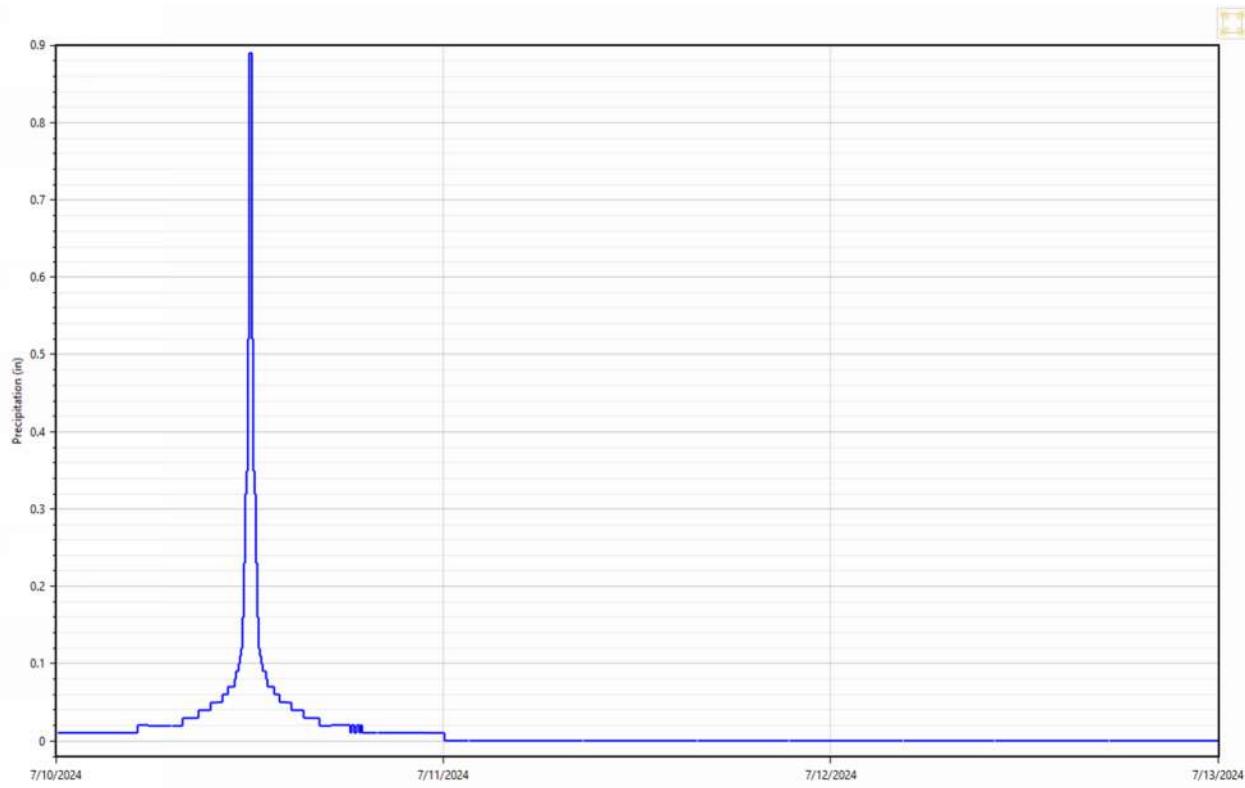


Figure 9 – 2D Precipitation (inches) for 100-year, 24-Hour Rainfall Event

Figure 10 below shows the incoming flows from the HMS model used as the upstream boundary condition in the HECRAS model. The same boundary conditions were utilized for both the existing and proposed scenarios.

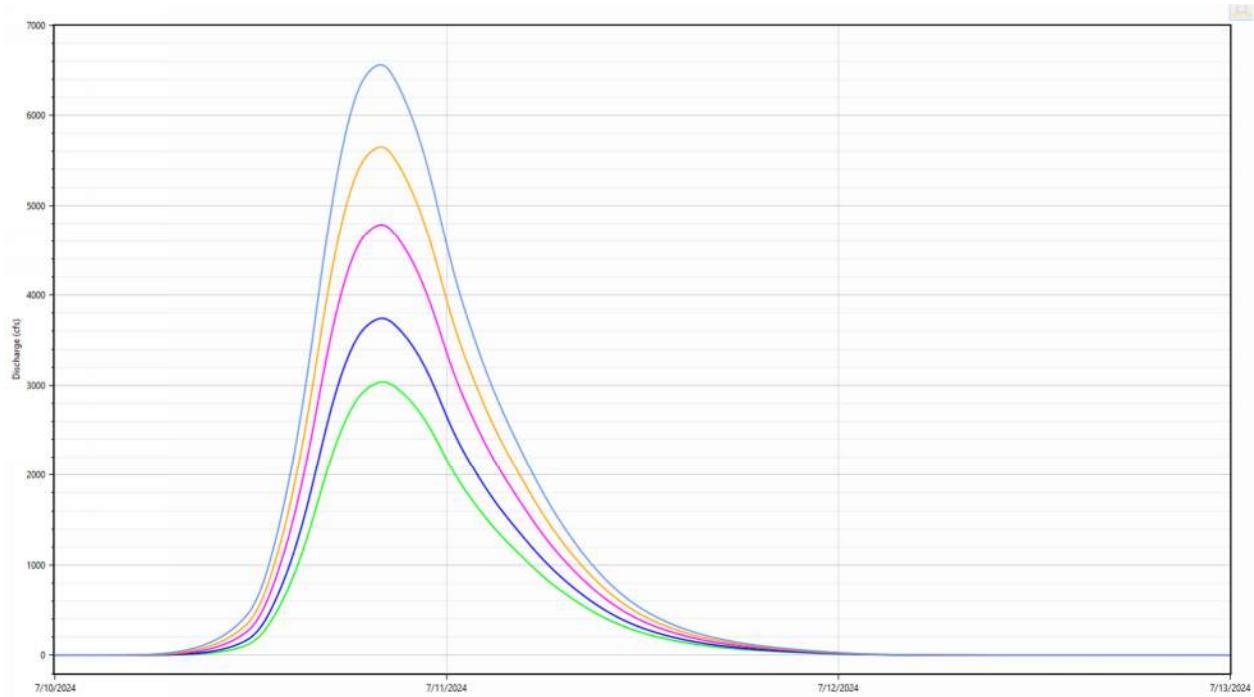


Figure 10 – Runoff from HMS

Regarding calibration, our model was calibrated to the existing FEMA Flood Insurance Study dated from 2012. It is worth noting a few things with regard to our calibrations.

While this study is only 13 years old, the existing model from FEMA for the Hornsby watershed is a HEC-2 Model and utilizes relatively older LiDAR data that does not have the definition of modern available data for the area. Despite this, it was relatively easy to calibrate the model as the FEMA data lined up to more recent modeling efforts. Due to the limitations of the FEMA model, we were only able to calibrate our model for the areas south of US 190 due to this being the limits of the existing FEMA Model. The values from the FEMA model generally stay within approximately a foot of water when compared to our model for the 100-year storm event.

4. VARIABLES, COEFFICIENTS, AND MODELING STRATEGIES

The Hornsby Creek watershed covers approximately 5.78 square miles near the City of Walker. While some of the area is developed for residential, commercial, and industrial use, large portions remain undeveloped. According to available NRCS soils data, the majority of the watershed consists of soil group D and C/D. Rainfall depths used in the model are based on NOAA Atlas 14 precipitation frequency estimates, with one representative distribution applied to the entire watershed.

Survey data was collected for a significant portion of the area and was considered more accurate than the available LiDAR data. All model layouts have been developed referencing North American Vertical Datum 1988 (NAVD 88) GEOID 12B for vertical measurements and North American Datum 1983 NAD83 (LA_S,FIPS 1702) for horizontal measurements, both in US ft. Survey data was collected for a significant portion of the area and was considered more accurate than the available LiDAR data.

Roadway crossings were modeled using the HEC-RAS Bridge/Culvert data tool, incorporating deck/roadway elevations, pier layouts, sizes, low chord elevations, and any flow obstructions based on available information. Where survey data was missing, general assumptions were made, including engineering estimates for some culverts and roadway crossings in the Hornsby Creek area. Site inspections were conducted to determine pipe sizes, materials, and approximate invert elevations.

The 2D Flow Areas were modeled using a hexagonal mesh with approximately 80' cell spacing. Breaklines were added where tighter spacing or point adjustments were needed, such as in areas with significant elevation changes (e.g., roadways, large ditches, ridges, and bodies of water). The initial terrain elevation mesh was created using the 2018 USGS Amite River Study LiDAR data.

Manning's 'n' roughness values for overland flow areas were assigned using data from a land cover grid created by observing the level of development across the model. Each land cover type was assigned an appropriate Manning's roughness value based on the characteristics of the terrain. Figure 11 and Table 2 on the following pages show the distribution of Manning's 'n' values and the corresponding roughness values for each terrain type. While the land cover data provided a reasonable general representation of the overbank areas in the watershed, it did not accurately reflect many of the drainage features that channel water through the watershed. Specifically in the main channel, Manning's 'n' values were adjusted based on available photographs, aerial imagery, and field inspections to more accurately model the existing conditions. The channel itself was adjusted to a value of 0.070.

Infiltration values were assigned based on the previously mentioned land cover grid. This layer accounted for water absorbed by the ground and depended on terrain type. Figure 12 depicts a visual representation of the layer with infiltration curve numbers ranging from 0.55 to 0.99.

Figure 11 – Mannings n Value Layer Distribution

NLCD Land Cover Manning's Values (NLCD 2021)	
Land Cover Type	Manning's n Value
Open Water	0.043
Buildings	0.100
Undeveloped, Forest	0.100
Wetlands, Forested	0.100
Water	0.030
Developed, Open Space	0.035
Wetlands, Non-Forested	0.060
Undeveloped, Shrub-Shrub	0.080
Landfill	0.100

Table 2 – Manning Values Per Terrain

Figure 12 – Infiltration Values Per Terrain

Table 3 below lists the HEC-RAS unsteady computation options that were selected and used across all simulations. These were either kept at their default values or only adjusted where needed to resolve any errors within the model where applicable.

Parameter	Value
2D Flow Options	
Theta	1
Theta warm up	1
Water surface tolerance (ft)	0.02
Volume tolerance (ft)	0.02
Equation set	Diffusion Wave

Table 3 – HEC-RAS Computational Options

5. DISCUSSION

It is important to note that the developments shown are just samples of what could potentially be done based on normal development or worst case scenarios given the current mitigation requirements of the parish. However, should a developer need to model alternative proposals, this model and information can be provided through LEDC for that use.

Figures 13 and 14 below show the water surface elevation comparison of the development site between a simulated 100-year storm event under current conditions and each of the proposed conditions. Areas in shades of blue indicate decreases and areas in red indicate increases. These values are greater the darker the color appears. The first proposed alternative is estimated to result in an average local change in water surface elevation ranging from -0.035' to 0.005', with the only major increase in water surface elevation completely relegated to a small portion of undeveloped land to the north of the detention pond with a maximum of 0.19'. The second proposed alternative is estimated to result in an average local change in water surface elevation ranging from -0.024' to 0.03', with the only major increase in water surface elevation completely relegated to a small portion of undeveloped land with a maximum of 0.075'. Additionally, water surface elevations on the downstream portion of the model for both alternatives were shown to have minor decreases from what was shown in the existing conditions ranging from .01'-0.03'.

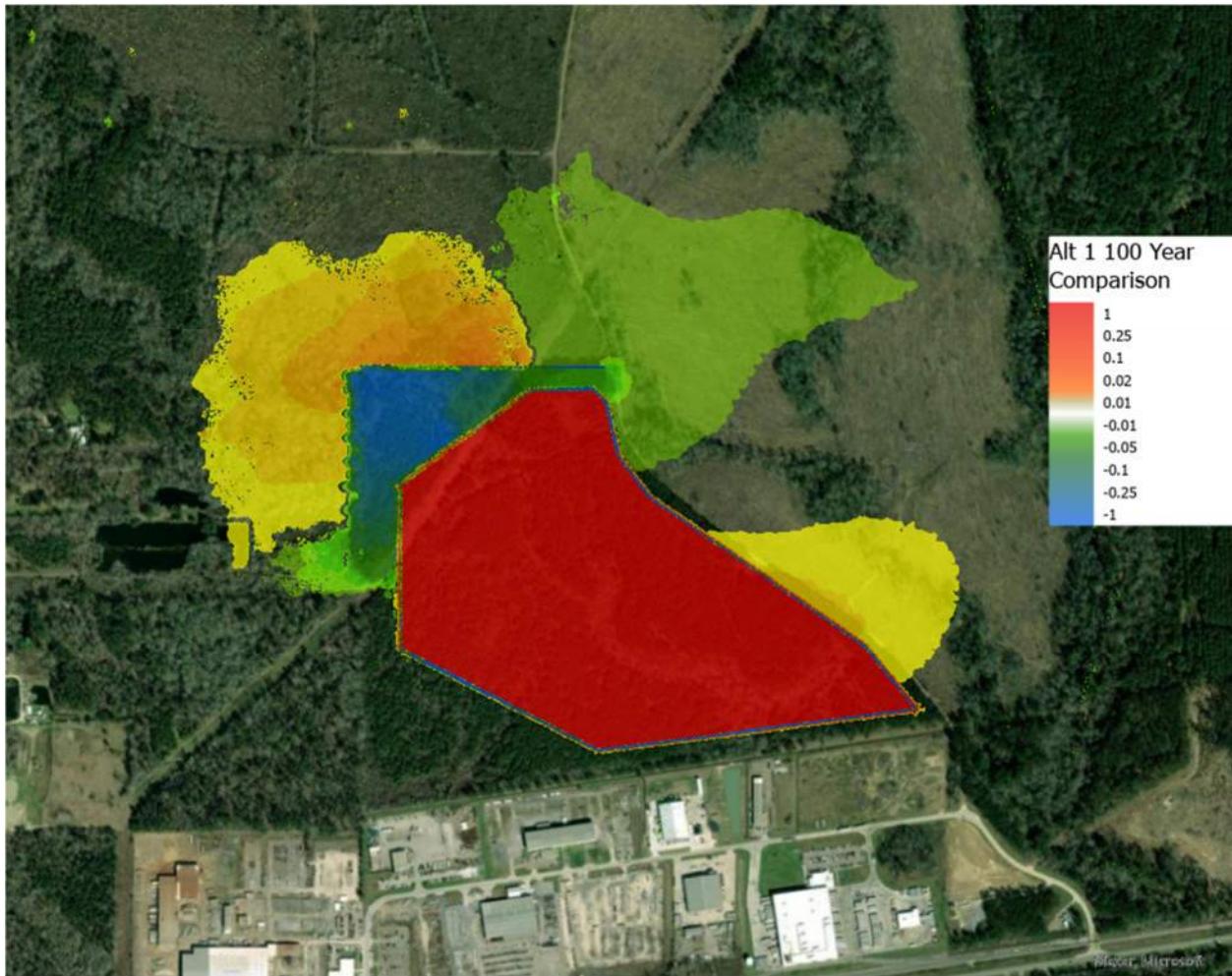


Figure 13 – Water Surface Elevation Comparison for 100-Year Event for Existing and Proposed Conditions

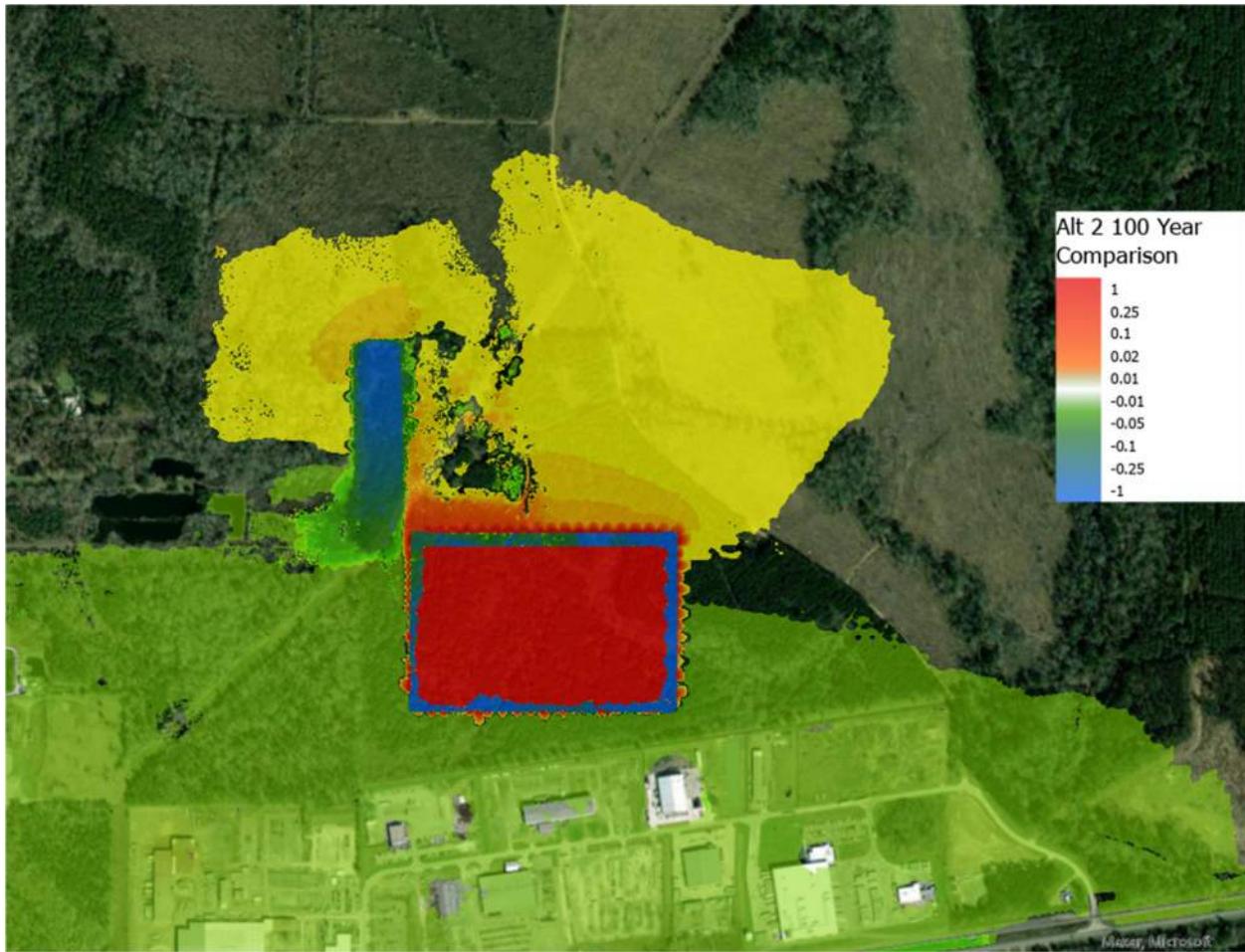


Figure 14 – Water Surface Elevation Comparison for 100-Year Event for Existing and 2nd Proposed Conditions

Figures 15 (a-d) displays the differences in water surface elevation between the existing and each of the proposed conditions in the same manner for the entire watershed. The yellow and red areas are entirely within undeveloped areas and are therefore considered acceptable by the scope of this project. It should also be noted that the area of raised ground for the new construction will always register as increased water surface elevation, but can be disregarded as no water will realistically stay on top of the platform.

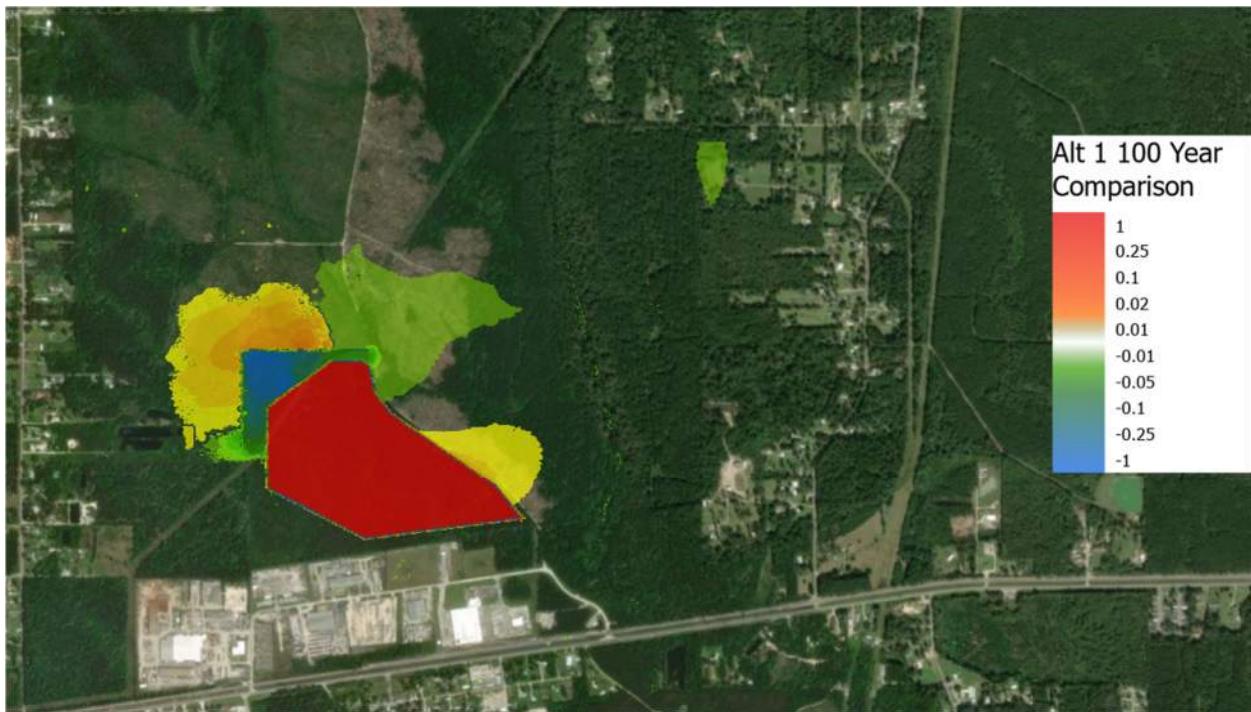


Figure 15a – Water Surface Elevation Difference (Existing vs. Proposed 1) for Northern Portion of Model

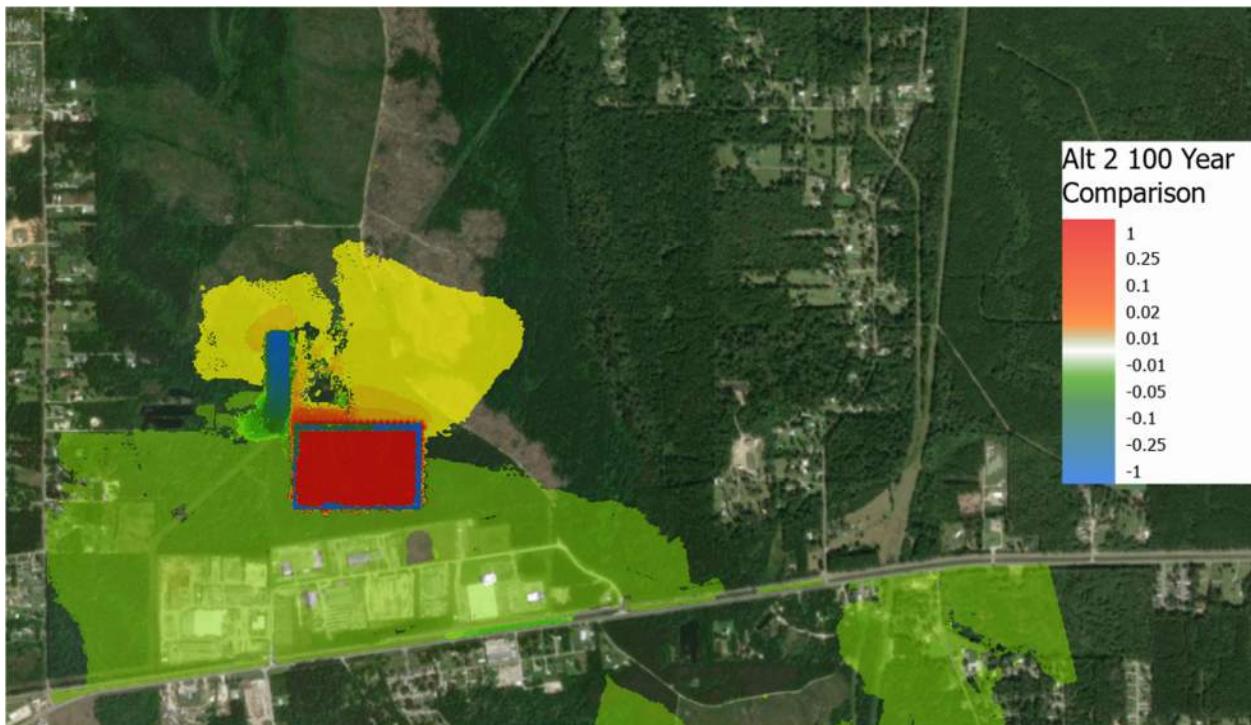


Figure 15b – Water Surface Elevation Difference (Existing vs. Proposed 2) for Northern Portion of Model

Figure 15c – Water Surface Elevation Difference (Existing vs. Proposed 1) for Southern Portion of Model

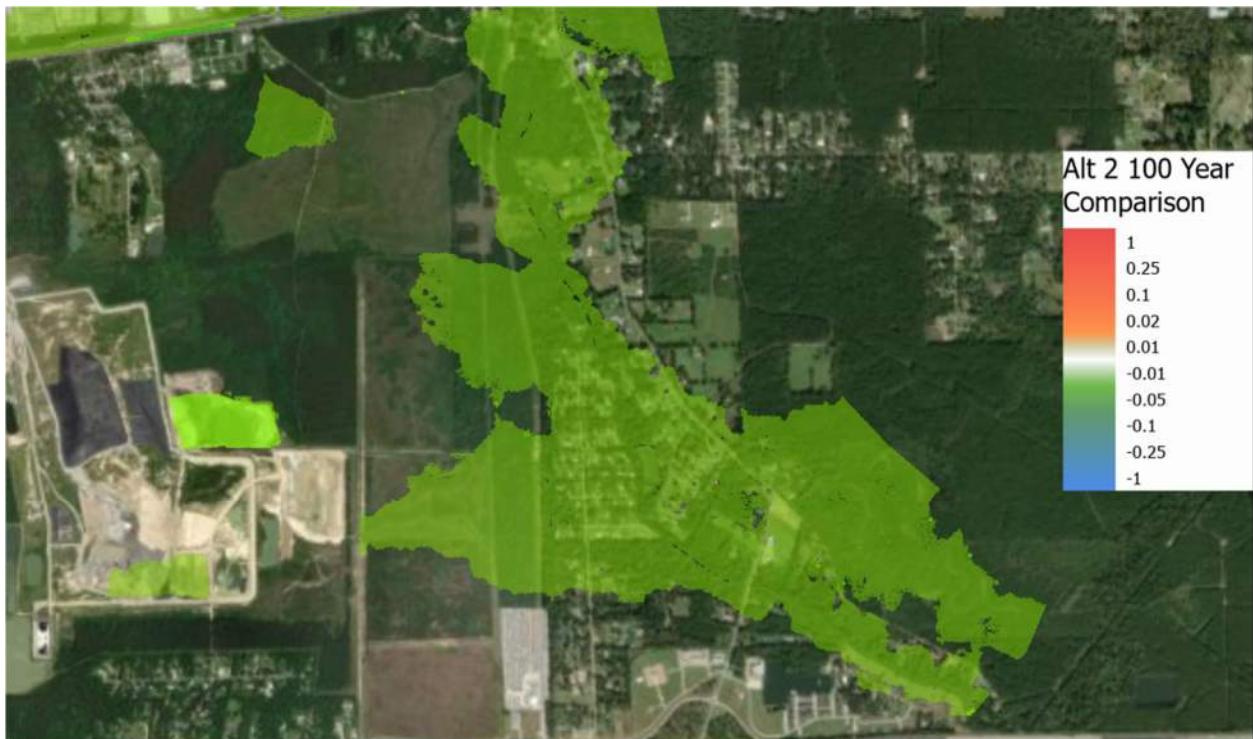
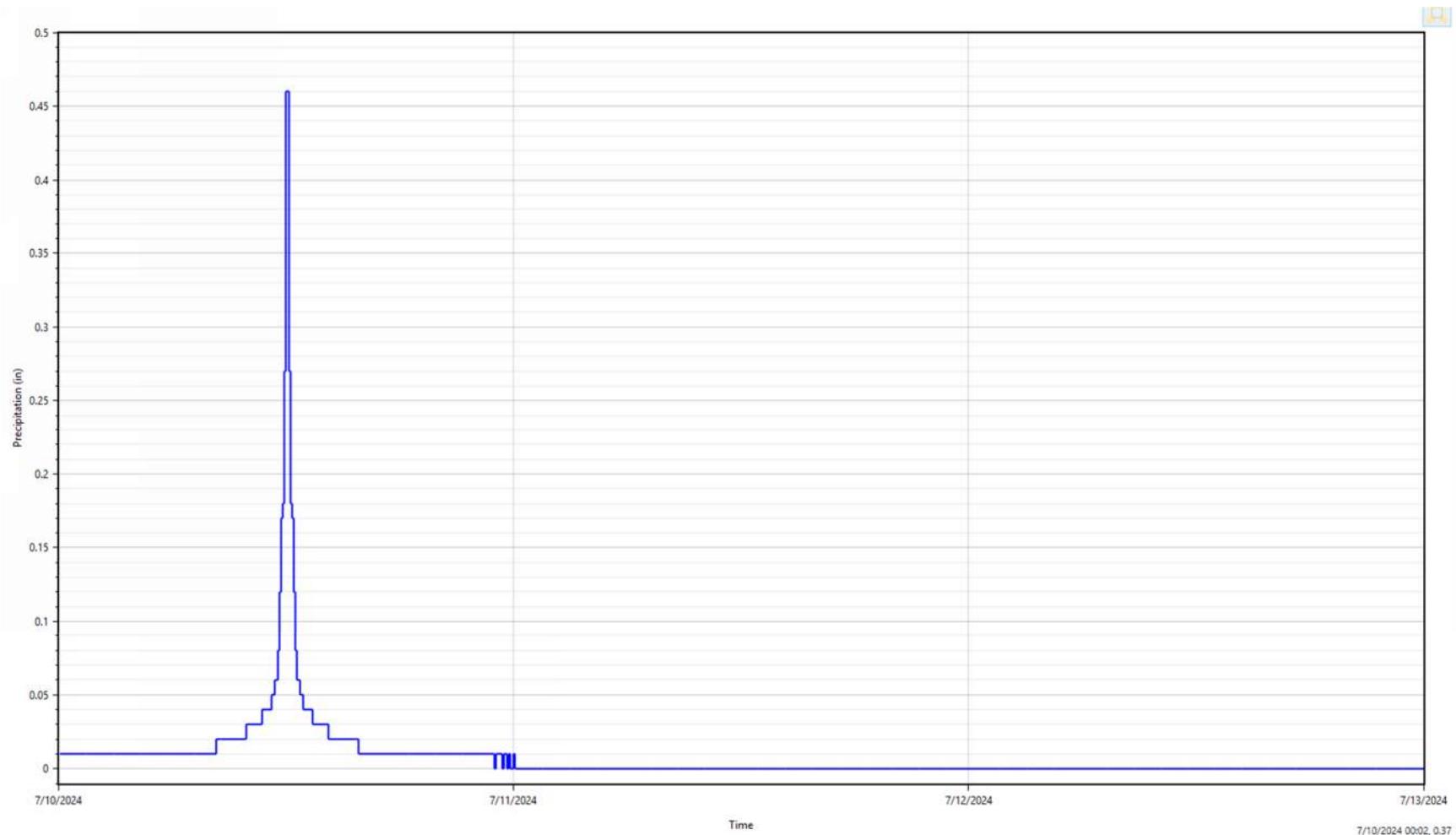


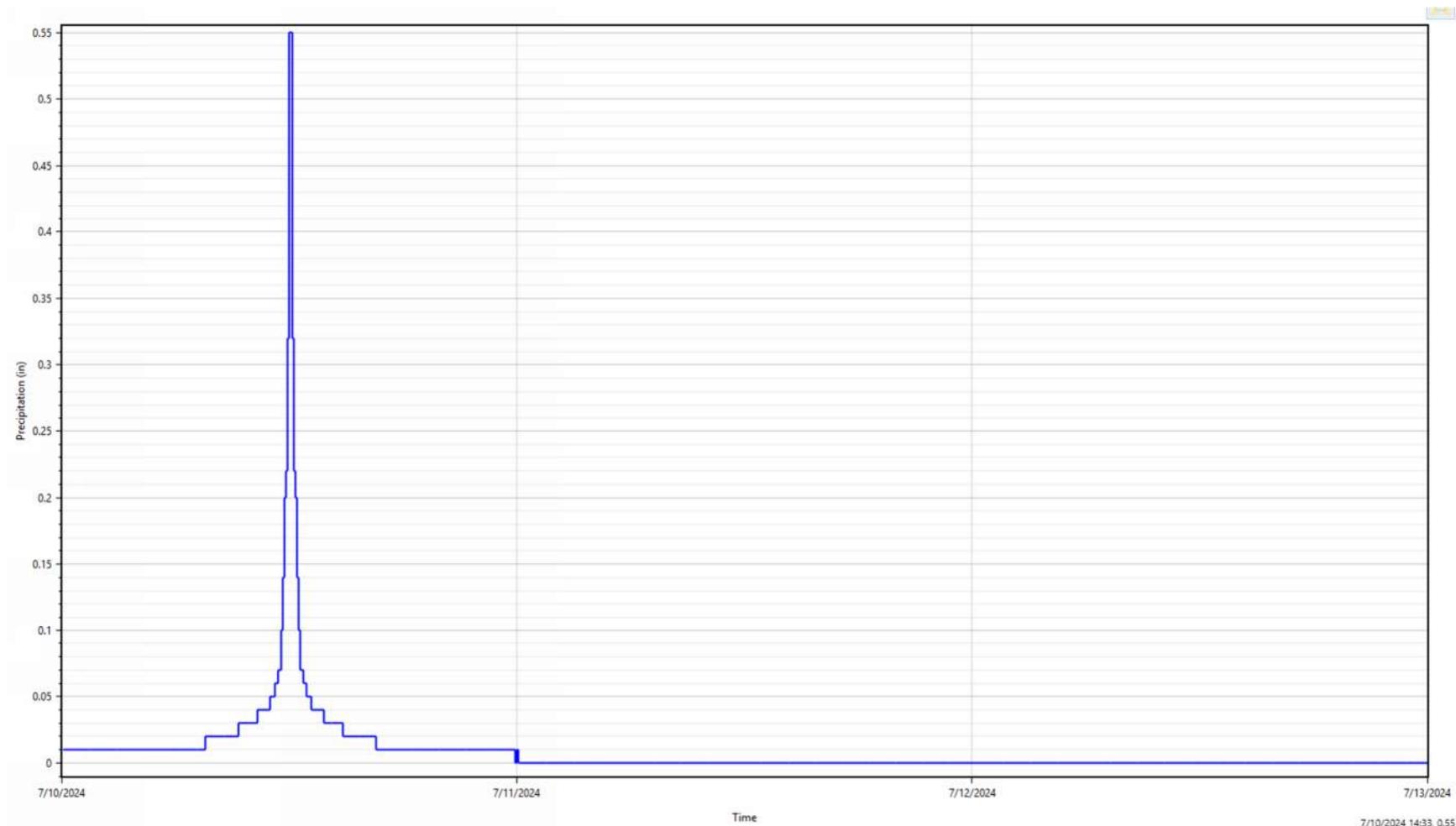
Figure 15d – Water Surface Elevation Difference (Existing vs. Proposed 2) for Southern Portion of Model

The only significant increase of water surface elevation for both scenarios occurs in an undeveloped wooded area north of the property.

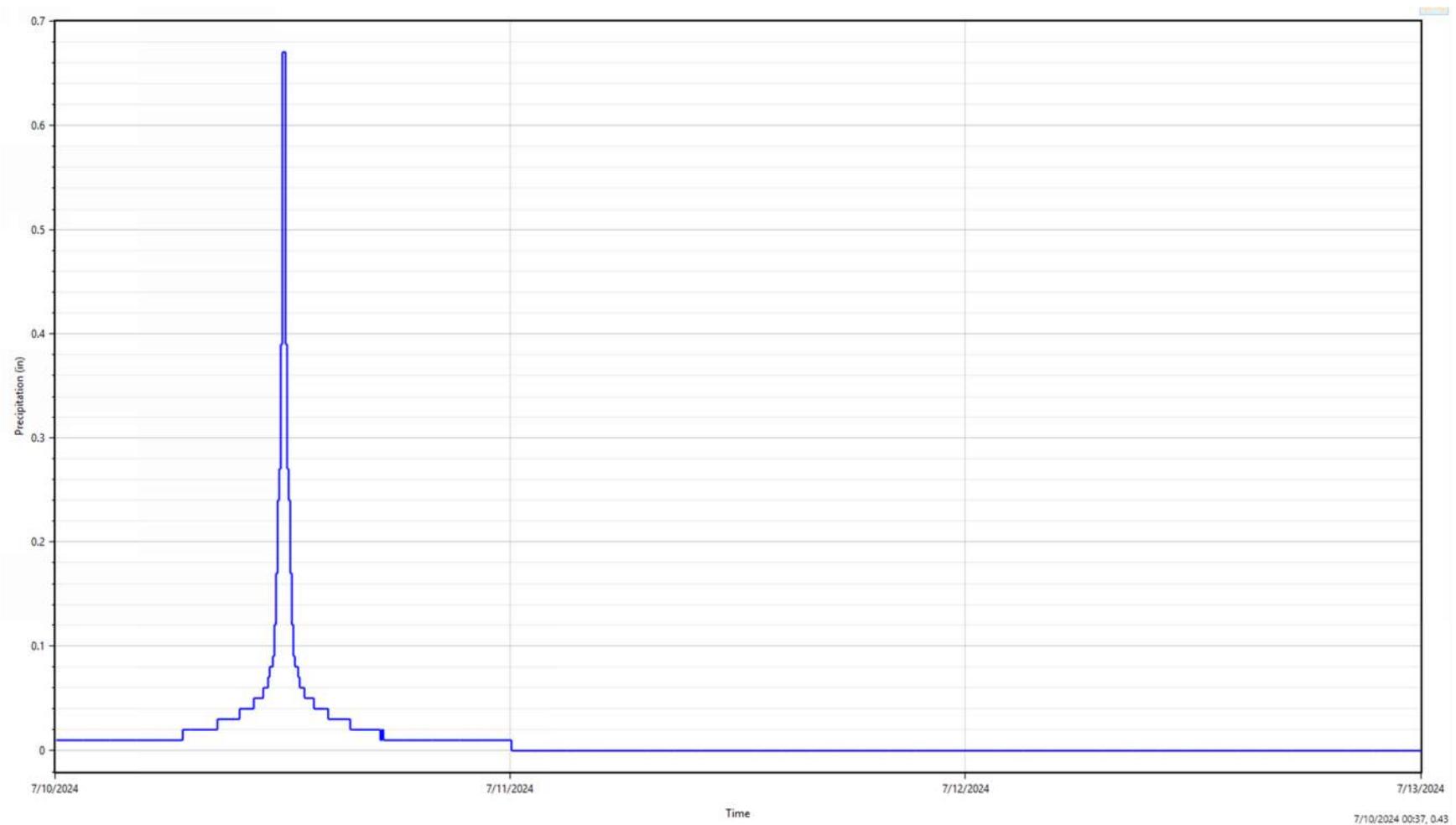
In its current state, the model is stable. The model has an acceptable amount of volume accounting error which ranges from approx. **0.06% to 0.08%** across all modeled runs. However, there are several areas within the model that show some isolated instances where error is double or triple these values. These errors are primarily contained around a handful of culvert crossings that become fully submerged during the model run. As the water drains out of the system, errors would occur due to these crossings starting as stopping their associated weir flow as the water drained out. These errors were both minor (less than 0.05') and would occur significantly after the associated peak. Because of this, they appear to have no impact on the results of the model.

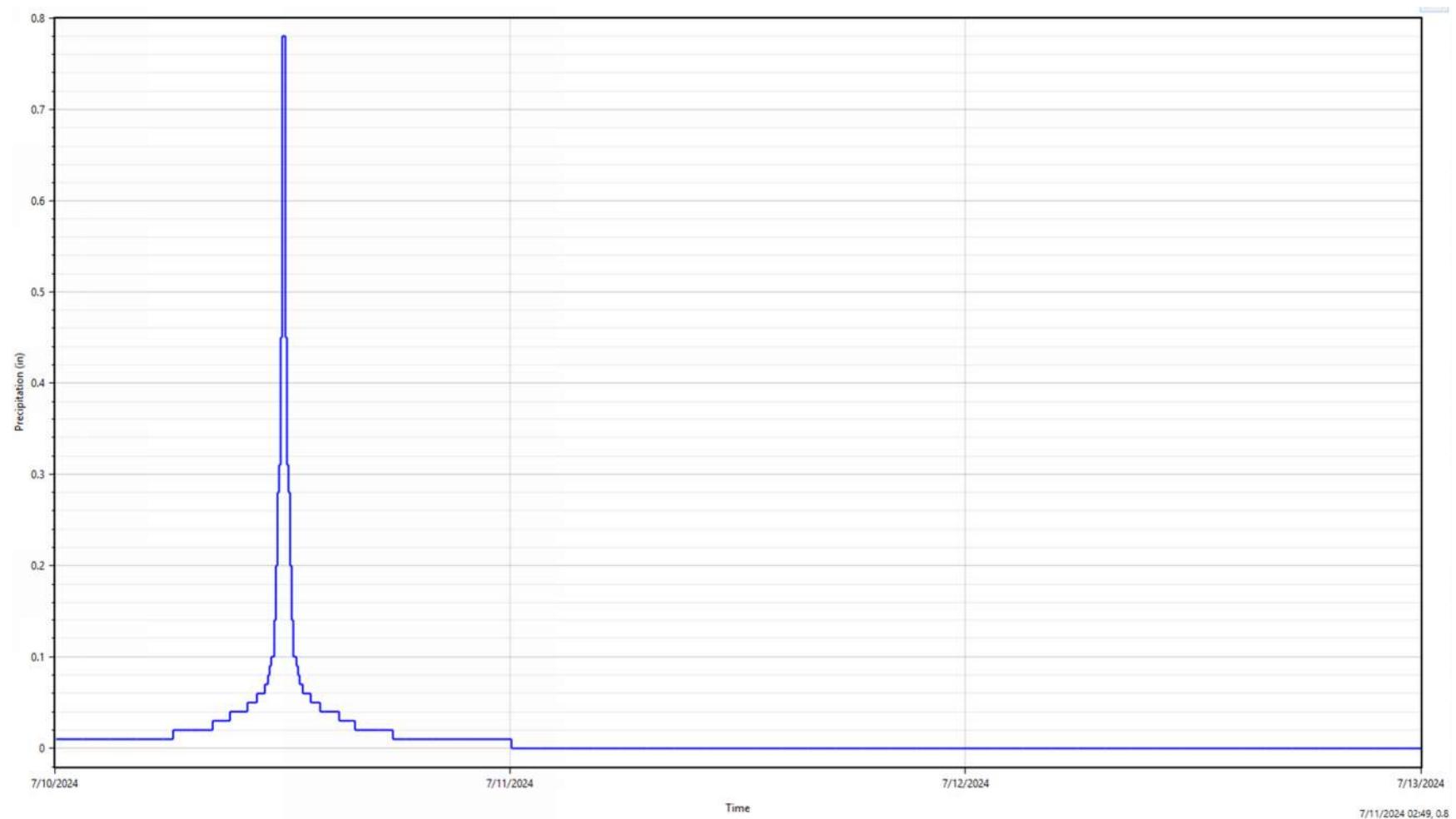

6. CONCLUSION

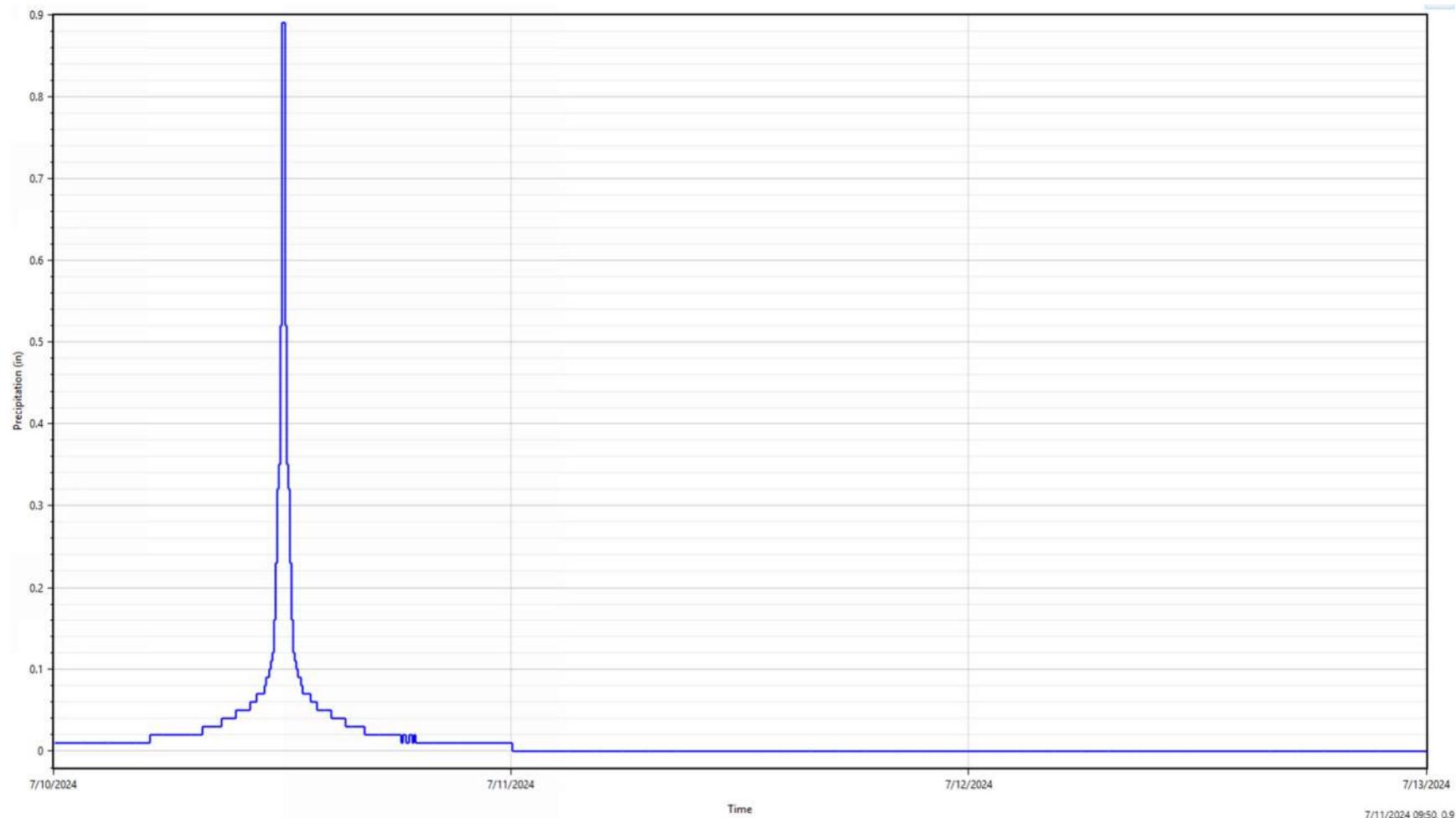
The proposed project is expected to not negatively impact the surrounding developed area if constructed based on the sample developed layouts. It should be noted that this report does not replace the need for a drainage impact study for any given development on this proposed site. A new construction would still require a study to ensure drainage routing is properly accommodated; this study would be expected to provide a head start toward these efforts.


Additionally, we do not expect any adverse downstream effects beyond the model limits, as water surface elevations in the existing model do not increase at any point during the simulations. Based on the information available at the time this report was prepared, we conclude that if the proposed improvements are constructed as described, they should not adversely impact flood risk within the watershed for any of the storm events analyzed.

ATTACHMENT 1


Hornsby 5 Year Storm Precipitation

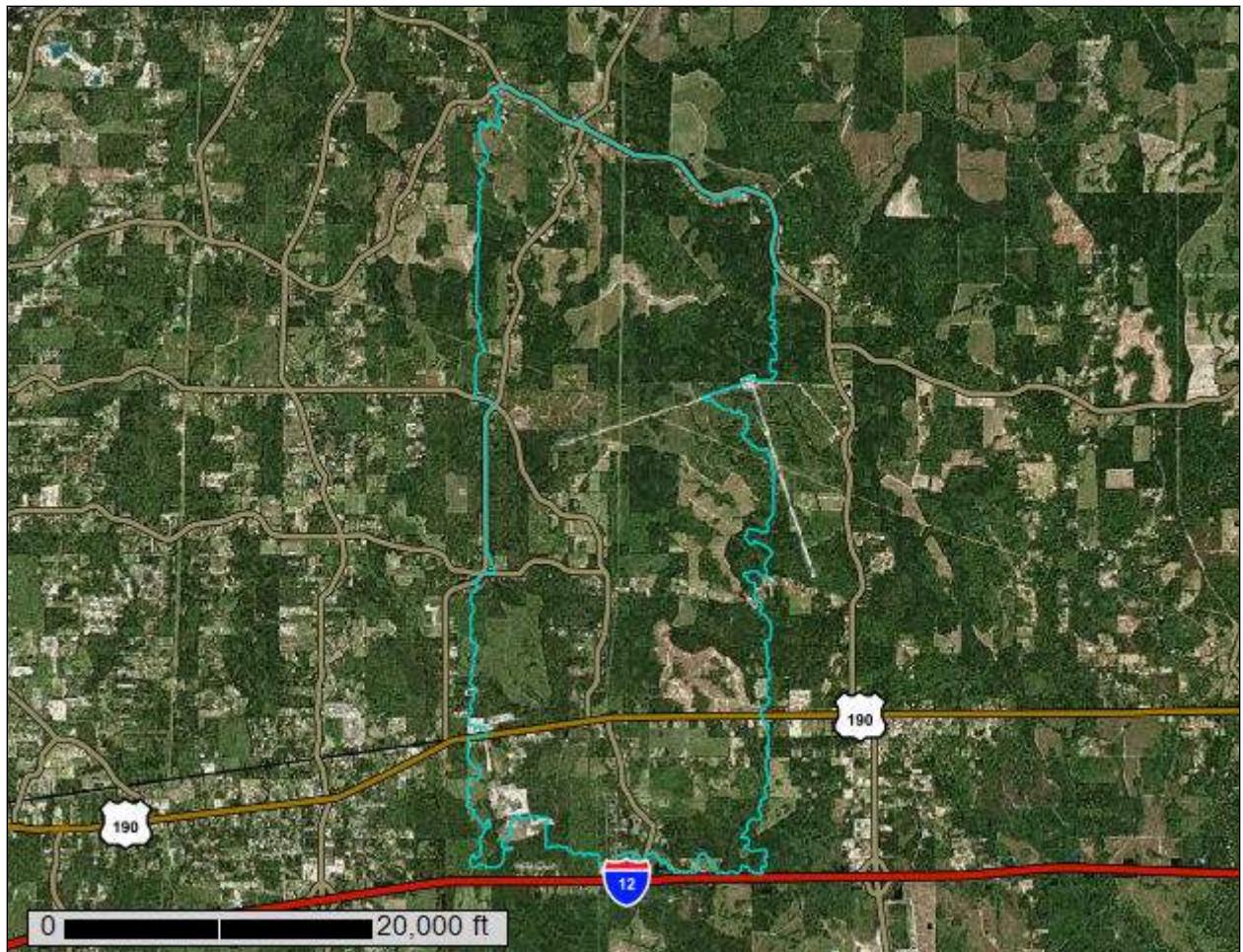

Hornsby 10 Year Storm Precipitation


Hornsby 25 Year Storm Precipitation

Hornsby 50 Year Storm Precipitation

Hornsby 100 Year Storm Precipitation

ATTACHMENT 2


United States
Department of
Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Livingston Parish, Louisiana

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (<http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/>) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (<https://offices.sc.egov.usda.gov/locator/app?agency=nrcs>) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map.....	9
Legend.....	10
Map Unit Legend.....	11
Map Unit Descriptions.....	11
Livingston Parish, Louisiana.....	14
Co—Colyell silt loam, 1 to 3 percent slopes, rarely flooded.....	14
Dv—Deerford-Verdun complex, 0 to 1 percent slopes.....	15
Dx—Dexter very fine sandy loam, 1 to 3 percent slopes.....	17
En—Encrow silt loam, occasionally flooded.....	18
Gb—Gilbert silt loam.....	20
Ge—Gilbert-Brimstone silt loams, occasionally flooded.....	21
Mt—Myatt fine sandy loam, 0 to 1 percent slopes.....	24
OU—Ouachita, Ochlockonee and Guyton soils, 0 to 3 percent slopes, frequently flooded.....	25
Pa—Pits-Arents complex, 0 to 5 percent slopes.....	28
Sa—Satsuma silt loam, 1 to 3 percent slopes.....	29
Sp—Springfield silt loam.....	30
St—Stough fine sandy loam.....	31
Ve—Verdun silt loam.....	33
W—Water.....	34
References	35

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units).

Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

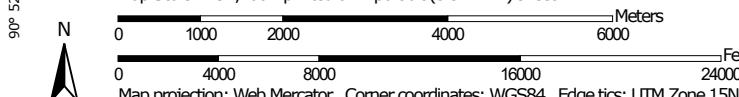
Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

Custom Soil Resource Report

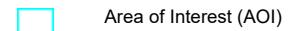
identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.


Soil Map


The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report

Soil Map


Map Scale: 1:91,700 if printed on A portrait (8.5" x 11") sheet.

Map projection: Web Mercator Corner coordinates: WGS84 Edge tics: UTM Zone 15N WGS84

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

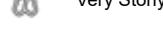
Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip


Sodic Spot

Spoil Area

Spoil Area

Stony Spot

Stony Spot

Very Stony Spot

Very Stony Spot

Wet Spot

Wet Spot

Other

Other

Special Line Features

Special Line Features

Water Features

Streams and Canals

Streams and Canals

Transportation

Rails

Rails

Interstate Highways

Interstate Highways

US Routes

US Routes

Major Roads

Major Roads

Local Roads

Local Roads

Background

Aerial Photography

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service

Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Livingston Parish, Louisiana

Survey Area Data: Version 19, Sep 5, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 12, 2023—Feb 18, 2023

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
Co	Colyell silt loam, 1 to 3 percent slopes, rarely flooded	3.7	0.0%
Dv	Deerford-Verdun complex, 0 to 1 percent slopes	3,798.0	19.2%
Dx	Dexter very fine sandy loam, 1 to 3 percent slopes	8.4	0.0%
En	Encrow silt loam, occasionally flooded	3,952.5	20.0%
Gb	Gilbert silt loam	2,865.0	14.5%
Ge	Gilbert-Brimstone silt loams, occasionally flooded	3,942.1	19.9%
Mt	Myatt fine sandy loam, 0 to 1 percent slopes	11.1	0.1%
OU	Ouachita, Ochlockonee and Guyton soils, 0 to 3 percent slopes, frequently flooded	1,001.8	5.1%
Pa	Pits-Arents complex, 0 to 5 percent slopes	16.4	0.1%
Sa	Satsuma silt loam, 1 to 3 percent slopes	3,769.8	19.0%
Sp	Springfield silt loam	175.7	0.9%
St	Stough fine sandy loam	50.4	0.3%
Ve	Verdun silt loam	151.9	0.8%
W	Water	56.2	0.3%
Totals for Area of Interest		19,802.8	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made

up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

Custom Soil Resource Report

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Livingston Parish, Louisiana

Co—Colyell silt loam, 1 to 3 percent slopes, rarely flooded

Map Unit Setting

National map unit symbol: 2w9x6

Elevation: 10 to 100 feet

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 64 to 70 degrees F

Frost-free period: 270 to 350 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Colyell and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Colyell

Setting

Landform: Stream terraces

Landform position (three-dimensional): Riser

Down-slope shape: Linear

Across-slope shape: Convex

Parent material: Thin silty loess over late pleistocene silty and clayey fluviomarine deposits over late pleistocene silty and clayey marine deposits

Typical profile

A - 0 to 3 inches: silt loam

E - 3 to 8 inches: silt

EB - 8 to 12 inches: silt loam

2Bt/E - 12 to 15 inches: silty clay

2Bt - 15 to 39 inches: silty clay

3Btn - 39 to 60 inches: silty clay loam

Properties and qualities

Slope: 1 to 3 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat poorly drained

Runoff class: Medium

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 11 to 12 inches

Frequency of flooding: Rare

Frequency of ponding: None

Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 5.0

Available water supply, 0 to 60 inches: High (about 10.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C/D

Ecological site: F134XY122LA - Baton Rouge Terrace Southern Loess Stream Terrace - PROVISIONAL

Hydric soil rating: No

Minor Components

Natalbany

Percent of map unit: 3 percent

Hydric soil rating: Yes

Springfield

Percent of map unit: 3 percent

Landform: Depressions

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Verdun

Percent of map unit: 3 percent

Landform: Terraces

Landform position (three-dimensional): Rise

Down-slope shape: Linear

Across-slope shape: Linear

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL

Hydric soil rating: No

Encrow

Percent of map unit: 1 percent

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Dv—Deerford-Verdun complex, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2wk4p

Elevation: 10 to 50 feet

Mean annual precipitation: 62 to 64 inches

Mean annual air temperature: 64 to 79 degrees F

Frost-free period: 258 to 321 days

Farmland classification: Not prime farmland

Map Unit Composition

Deerford and similar soils: 50 percent

Verdun and similar soils: 40 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Deerford

Setting

Landform: Terraces

Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Fine-silty loess

Typical profile

Ap - 0 to 4 inches: silt loam
E/Bg - 4 to 23 inches: silt loam
Btn1 - 23 to 30 inches: silty clay loam
Btn2 - 30 to 38 inches: silt loam
B'tn - 38 to 92 inches: silt loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: 17 to 24 inches to natic
Drainage class: Somewhat poorly drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.01 to 0.14 in/hr)
Depth to water table: About 6 to 8 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 1 percent
Maximum salinity: Slightly saline to moderately saline (4.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 20.0
Available water supply, 0 to 60 inches: Low (about 3.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: C/D
Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL
Hydric soil rating: No

Description of Verdun

Setting

Landform: Terraces
Landform position (three-dimensional): Rise
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Fine-silty loess

Typical profile

Ap - 0 to 5 inches: silt loam
B/E - 5 to 9 inches: silt loam
Btn1 - 9 to 16 inches: silty clay loam
Btn2 - 16 to 40 inches: silt loam
Cn - 40 to 80 inches: silt loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: 9 inches to natic
Drainage class: Somewhat poorly drained
Runoff class: Low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low (0.01 to 0.14 in/hr)

Depth to water table: About 6 to 10 inches

Frequency of flooding: None

Frequency of ponding: None

Calcium carbonate, maximum content: 1 percent

Maximum salinity: Slightly saline to moderately saline (4.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 20.0

Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: A/D

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL

Hydric soil rating: No

Minor Components

Frost

Percent of map unit: 10 percent

Landform: Terraces

Landform position (three-dimensional): Talf

Down-slope shape: Concave

Across-slope shape: Linear

Ecological site: R134XY402LA - Southwestern Loess Terrace Prairie - PROVISIONAL

Hydric soil rating: Yes

Dx—Dexter very fine sandy loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: m3vq

Elevation: 20 to 80 feet

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 55 to 79 degrees F

Frost-free period: 221 to 277 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Dexter and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Dexter

Setting

Landform: Terraces

Down-slope shape: Convex

Typical profile

A - 0 to 6 inches: very fine sandy loam
Bt - 6 to 32 inches: clay loam
2BC - 32 to 59 inches: fine sandy loam
C - 59 to 66 inches: fine sandy loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very high (about 12.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: B
Hydric soil rating: No

Minor Components

Gilbert

Percent of map unit: 10 percent
Landform: Depressions
Hydric soil rating: Yes

En—Encrow silt loam, occasionally flooded

Map Unit Setting

National map unit symbol: m3vr
Elevation: 0 to 150 feet
Mean annual precipitation: 55 to 76 inches
Mean annual air temperature: 55 to 79 degrees F
Frost-free period: 221 to 277 days
Farmland classification: Not prime farmland

Map Unit Composition

Encrow and similar soils: 85 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Encrow

Setting

Landform: Terraces

Down-slope shape: Linear

Across-slope shape: Linear

Parent material: Loess

Typical profile

A - 0 to 4 inches: silt loam

Eg, E/Bg - 4 to 27 inches: silt loam

2Btg - 27 to 48 inches: silty clay

2BCng - 48 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: Occasional

Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 9.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: C/D

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Minor Components

Colyell, frequently flooded

Percent of map unit: 4 percent

Landform: Stream terraces

Down-slope shape: Convex

Across-slope shape: Linear

Ecological site: F134XY122LA - Baton Rouge Terrace Southern Loess Stream Terrace - PROVISIONAL

Hydric soil rating: Yes

Natalbany, frequently flooded

Percent of map unit: 4 percent

Landform: Flood plains

Down-slope shape: Linear

Across-slope shape: Linear

Hydric soil rating: Yes

Springfield

Percent of map unit: 4 percent

Landform: Terraces

Down-slope shape: Convex

Across-slope shape: Linear

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Deerford

Percent of map unit: 3 percent

Landform: Terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Linear

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace -

PROVISIONAL

Hydric soil rating: No

Gb—Gilbert silt loam

Map Unit Setting

National map unit symbol: m3vs

Elevation: 10 to 80 feet

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 55 to 79 degrees F

Frost-free period: 221 to 277 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Gilbert and similar soils: 85 percent

Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gilbert

Setting

Landform: Terraces

Down-slope shape: Linear

Across-slope shape: Linear

Typical profile

A - 0 to 6 inches: silt loam

Eg - 6 to 12 inches: silt loam

Btg - 12 to 28 inches: silty clay loam

Btng - 28 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: Rare

Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 11.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: D

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL
Hydric soil rating: Yes

Minor Components

Deerford

Percent of map unit: 4 percent
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL
Hydric soil rating: No

Satsuma

Percent of map unit: 4 percent
Landform: Ridges on stream terraces
Landform position (three-dimensional): Riser
Down-slope shape: Convex
Across-slope shape: Linear
Ecological site: F134XY122LA - Baton Rouge Terrace Southern Loess Stream Terrace - PROVISIONAL
Hydric soil rating: No

Verdun

Percent of map unit: 4 percent
Landform: Terraces
Landform position (three-dimensional): Rise
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL
Hydric soil rating: No

Myatt

Percent of map unit: 3 percent
Landform: Stream terraces
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F152AY100LA - Western Silty Flat
Hydric soil rating: Yes

Ge—Gilbert-Brimstone silt loams, occasionally flooded

Map Unit Setting

National map unit symbol: m3vt
Elevation: 0 to 130 feet

Mean annual precipitation: 55 to 76 inches
Mean annual air temperature: 55 to 79 degrees F
Frost-free period: 221 to 277 days
Farmland classification: Not prime farmland

Map Unit Composition

Gilbert and similar soils: 60 percent
Brimstone and similar soils: 25 percent
Minor components: 15 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Gilbert

Setting

Landform: Depressions
Down-slope shape: Linear
Across-slope shape: Linear

Typical profile

A - 0 to 6 inches: silt loam
Eg - 6 to 12 inches: silt loam
Btg - 12 to 28 inches: silty clay loam
Btng - 28 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Available water supply, 0 to 60 inches: High (about 11.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: D
Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL
Hydric soil rating: Yes

Description of Brimstone

Setting

Landform: Depressions
Down-slope shape: Concave
Across-slope shape: Linear
Parent material: Loamy fluviomarine deposits of late pleistocene age

Typical profile

A - 0 to 18 inches: silt loam
E/Btg - 18 to 24 inches: silt loam
Btg/E - 24 to 30 inches: silty clay loam
Btng - 30 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: 10 to 30 inches to natic
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 0 to 18 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Available water supply, 0 to 60 inches: Low (about 3.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3s
Hydrologic Soil Group: C/D
Hydric soil rating: Yes

Minor Components

Deerford

Percent of map unit: 4 percent
Landform: Terraces
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL
Hydric soil rating: No

Verdun

Percent of map unit: 4 percent
Landform: Terraces
Landform position (three-dimensional): Rise
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL
Hydric soil rating: No

Satsuma

Percent of map unit: 4 percent
Landform: Ridges on stream terraces
Landform position (three-dimensional): Riser
Down-slope shape: Convex
Across-slope shape: Linear
Ecological site: F134XY122LA - Baton Rouge Terrace Southern Loess Stream Terrace - PROVISIONAL
Hydric soil rating: No

Olivier

Percent of map unit: 3 percent
Landform: Interfluves
Landform position (two-dimensional): Footslope
Landform position (three-dimensional): Interfluve
Down-slope shape: Convex
Across-slope shape: Linear

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace -
PROVISIONAL
Hydric soil rating: No

Mt—Myatt fine sandy loam, 0 to 1 percent slopes

Map Unit Setting

National map unit symbol: 2syw2
Elevation: 20 to 430 feet
Mean annual precipitation: 57 to 71 inches
Mean annual air temperature: 55 to 79 degrees F
Frost-free period: 215 to 291 days
Farmland classification: Not prime farmland

Map Unit Composition

Myatt and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Myatt

Setting

Landform: Stream terraces
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Pleistocene fluviomarine deposits

Typical profile

A - 0 to 16 inches: fine sandy loam
Btg - 16 to 50 inches: sandy clay loam
Cg - 50 to 64 inches: sandy clay loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high
(0.20 to 2.00 in/hr)
Depth to water table: About 0 to 11 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 9.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w

Hydrologic Soil Group: B/D
Ecological site: F152AY100LA - Western Silty Flat
Hydric soil rating: Yes

Minor Components

Fluker

Percent of map unit: 5 percent
Landform: Stream terraces
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Hydric soil rating: No

Stough

Percent of map unit: 5 percent
Landform: Stream terraces
Landform position (two-dimensional): Toeslope
Landform position (three-dimensional): Tread
Down-slope shape: Linear
Across-slope shape: Linear
Ecological site: F152AY100LA - Western Silty Flat
Hydric soil rating: No

OU—Ouachita, Ochlockonee and Guyton soils, 0 to 3 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2w8y5
Elevation: 10 to 280 feet
Mean annual precipitation: 57 to 69 inches
Mean annual air temperature: 61 to 70 degrees F
Frost-free period: 215 to 270 days
Farmland classification: Not prime farmland

Map Unit Composition

Ouachita and similar soils: 40 percent
Ochlockonee and similar soils: 35 percent
Guyton and similar soils: 20 percent
Minor components: 5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ouachita

Setting

Landform: Flood plains
Landform position (three-dimensional): Talf
Down-slope shape: Convex
Across-slope shape: Linear

Parent material: Loamy alluvium

Typical profile

A - 0 to 4 inches: silt loam
Bw1 - 4 to 40 inches: silt loam
Bw2 - 40 to 60 inches: silt loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: High (about 11.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: B
Hydric soil rating: Yes

Description of Ochlockonee

Setting

Landform: Natural levees
Landform position (three-dimensional): Rise
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Loamy alluvium

Typical profile

A - 0 to 5 inches: silt loam
C - 5 to 60 inches: fine sandy loam

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: About 39 to 60 inches
Frequency of flooding: Frequent
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 9.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: B
Hydric soil rating: No

Description of Guyton

Setting

Landform: Flood plains

Landform position (three-dimensional): Dip

Down-slope shape: Concave

Across-slope shape: Linear

Parent material: Late plisocene age terraces with loamy alluvium derived from sedimentary rock

Typical profile

A - 0 to 3 inches: silt loam

E - 3 to 27 inches: silt loam

Btg/E - 27 to 41 inches: silty clay loam

Btg - 41 to 70 inches: silty clay loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Runoff class: Very low

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 18 inches

Frequency of flooding: Frequent

Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)

Sodium adsorption ratio, maximum: 10.0

Available water supply, 0 to 60 inches: Very high (about 12.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 5w

Hydrologic Soil Group: C/D

Ecological site: F134XY101MS - Southern Rolling Plains Loess Drainways - PROVISIONAL

Hydric soil rating: Yes

Minor Components

Cahaba

Percent of map unit: 5 percent

Landform: Flood-plain steps

Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Convex

Hydric soil rating: No

Pa—Pits-Arents complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: m3w3

Elevation: 20 to 100 feet

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 55 to 79 degrees F

Frost-free period: 221 to 277 days

Farmland classification: Not prime farmland

Map Unit Composition

Pits: 65 percent

Arents and similar soils: 25 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pits

Setting

Down-slope shape: Concave

Across-slope shape: Concave

Description of Arents

Setting

Landform: Depressions

Down-slope shape: Concave

Across-slope shape: Linear

Parent material: Pleistocene fluviomarine deposits

Properties and qualities

Slope: 1 to 5 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Somewhat poorly drained

Depth to water table: More than 80 inches

Frequency of flooding: None

Frequency of ponding: None

Minor Components

Arents, flooded

Percent of map unit: 10 percent

Landform: Depressions

Hydric soil rating: Yes

Sa—Satsuma silt loam, 1 to 3 percent slopes

Map Unit Setting

National map unit symbol: m3w4
Elevation: 0 to 50 feet
Mean annual precipitation: 55 to 76 inches
Mean annual air temperature: 55 to 79 degrees F
Frost-free period: 221 to 277 days
Farmland classification: All areas are prime farmland

Map Unit Composition

Satsuma and similar soils: 95 percent
Minor components: 5 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Satsuma

Setting

Landform: Ridges on stream terraces
Down-slope shape: Convex
Across-slope shape: Linear

Typical profile

Ap - 0 to 4 inches: silt loam
EB - 4 to 12 inches: silt loam
Bt/E - 12 to 18 inches: silty clay loam
Btn - 18 to 28 inches: loam
2Btnx - 28 to 35 inches: clay loam
2Btnx - 35 to 65 inches: loam

Properties and qualities

Slope: 1 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: Rare
Frequency of ponding: None
Available water supply, 0 to 60 inches: Moderate (about 8.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2e
Hydrologic Soil Group: D
Ecological site: F134XY122LA - Baton Rouge Terrace Southern Loess Stream Terrace - PROVISIONAL
Hydric soil rating: No

Minor Components

Gilbert

Percent of map unit: 5 percent

Landform: Depressions

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Sp—Springfield silt loam

Map Unit Setting

National map unit symbol: m3w5

Elevation: 10 to 150 feet

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 55 to 79 degrees F

Frost-free period: 221 to 277 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Springfield and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Springfield

Setting

Landform: Terraces

Down-slope shape: Convex

Across-slope shape: Linear

Typical profile

A - 0 to 3 inches: silt loam

Eg - 3 to 13 inches: silt loam

Btg - 13 to 20 inches: silty clay

Bt - 20 to 60 inches: silty clay loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)

Depth to water table: About 0 to 24 inches

Frequency of flooding: None

Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 11.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: C/D

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Minor Components

Colyell, frequently floodded

Percent of map unit: 4 percent

Landform: Stream terraces

Down-slope shape: Convex

Across-slope shape: Linear

Ecological site: F134XY122LA - Baton Rouge Terrace Southern Loess Stream Terrace - PROVISIONAL

Hydric soil rating: Yes

Encrow, occasionally flooded

Percent of map unit: 2 percent

Landform: Terraces

Down-slope shape: Linear

Across-slope shape: Linear

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

Deerford

Percent of map unit: 2 percent

Landform: Terraces

Landform position (three-dimensional): Tread

Down-slope shape: Linear

Across-slope shape: Linear

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL

Hydric soil rating: No

Verdun

Percent of map unit: 2 percent

Landform: Terraces

Landform position (three-dimensional): Rise

Down-slope shape: Linear

Across-slope shape: Linear

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL

Hydric soil rating: No

St—Stough fine sandy loam

Map Unit Setting

National map unit symbol: m3w6

Elevation: 0 to 100 feet

Mean annual precipitation: 55 to 76 inches
Mean annual air temperature: 55 to 79 degrees F
Frost-free period: 221 to 277 days
Farmland classification: All areas are prime farmland

Map Unit Composition

Stough and similar soils: 90 percent
Minor components: 10 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Stough

Setting

Landform: Ridges on stream terraces
Down-slope shape: Convex
Across-slope shape: Linear
Parent material: Pleistocene loamy fluviomarine deposits

Typical profile

A, E - 0 to 7 inches: fine sandy loam
Bt - 7 to 14 inches: loam
Btx - 14 to 60 inches: loam

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.60 in/hr)
Depth to water table: About 6 to 12 inches
Frequency of flooding: Rare
Frequency of ponding: None
Available water supply, 0 to 60 inches: Very low (about 1.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 2w
Hydrologic Soil Group: C/D
Ecological site: F152AY100LA - Western Silty Flat
Hydric soil rating: No

Minor Components

Guyton

Percent of map unit: 5 percent
Landform: Depressions
Ecological site: F152AY100LA - Western Silty Flat
Hydric soil rating: Yes

Myatt

Percent of map unit: 5 percent
Landform: Depressions
Ecological site: F152AY100LA - Western Silty Flat
Hydric soil rating: Yes

Ve—Verdun silt loam

Map Unit Setting

National map unit symbol: m3w8

Elevation: 0 to 70 feet

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 55 to 79 degrees F

Frost-free period: 221 to 277 days

Farmland classification: Not prime farmland

Map Unit Composition

Verdun and similar soils: 90 percent

Minor components: 10 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Verdun

Setting

Landform: Terraces

Down-slope shape: Linear

Across-slope shape: Linear

Typical profile

A - 0 to 4 inches: silt loam

E/Btg - 4 to 12 inches: silt loam

Btng - 12 to 22 inches: silty clay loam

Btn - 22 to 60 inches: silty clay loam

Ckn - 60 to 70 inches: silt loam

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: 6 to 16 inches to natic

Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)

Depth to water table: About 6 to 12 inches

Frequency of flooding: Rare

Frequency of ponding: None

Calcium carbonate, maximum content: 5 percent

Available water supply, 0 to 60 inches: Very low (about 2.2 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4s

Hydrologic Soil Group: D

Ecological site: F134XY124LA - Baton Rouge Terrace Southern Loess Terrace - PROVISIONAL

Hydric soil rating: No

Minor Components

Springfield

Percent of map unit: 10 percent

Landform: Depressions

Ecological site: F134XY123LA - Baton Rouge Terrace Southern Loess Low Terrace - PROVISIONAL

Hydric soil rating: Yes

W—Water

Map Unit Setting

National map unit symbol: 1tckl

Mean annual precipitation: 55 to 76 inches

Mean annual air temperature: 55 to 79 degrees F

Frost-free period: 221 to 277 days

Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

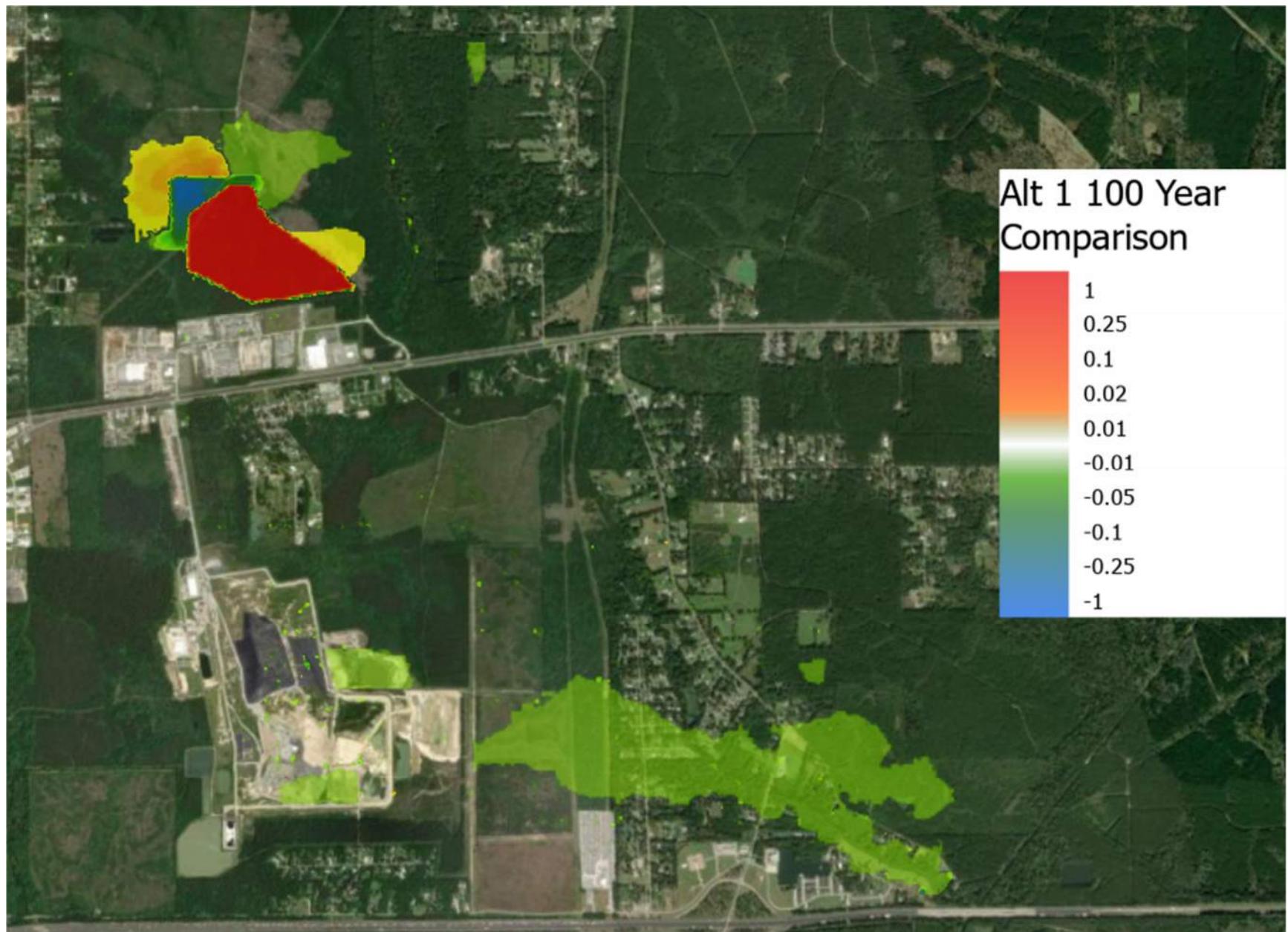
Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

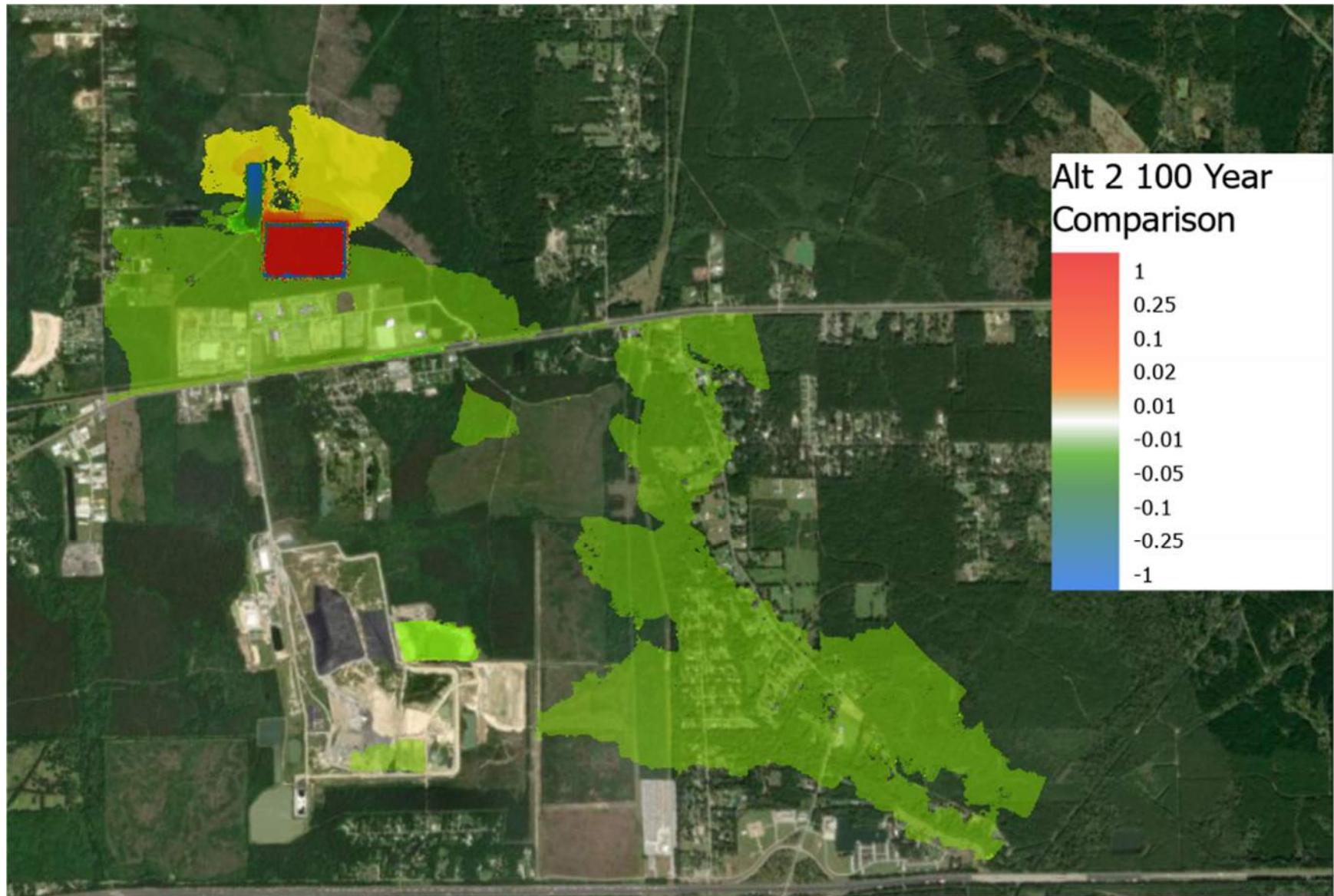
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2_053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. <http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084>


Custom Soil Resource Report


United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

ATTACHMENT 3

ATTACHMENT 4

HECRAS Infiltration Values

Land type: Soil Group	Curve Number	Initial Abstraction Ratio	Min Infiltration Rate (in/hr)
NoData	85	0.35	0.12
NoData: D	87	0.3	0.12
NoData: C-D	82	0.44	0.12
NoData: B	75	0.67	0.12
Paved Areas: NoData	99	0.02	0.12
Paved Areas: D	99	0.02	0.12
Paved Areas: C-D	99	0.02	0.12
Paved Areas: B	99	0.02	0.12
Buildings: NoData	99	0.02	0.12
Buildings: D	99	0.02	0.12
Buildings: C-D	99	0.02	0.12
Buildings: B	99	0.02	0.12
Undeveloped, Forest: NoData	87	0.3	0.12
Undeveloped, Forest: D	77	0.6	0.12
Undeveloped, Forest: C-D	74	0.7	0.12
Undeveloped, Forest: B	55	1.64	0.12
Wetlands, Forested: NoData	78	0.56	0.12
Wetlands, Forested: D	78	0.56	0.12
Wetlands, Forested: C-D	78	0.56	0.12
Wetlands, Forested: B	78	0.56	0.12
Water: NoData	100	0	0.12
Water: D	100	0	0.12
Water: C-D	100	0	0.12
Water: B	100	0	0.12
Developed, Open Space: NoData	75	0.67	0.12
Developed, Open Space: D	84	0.38	0.12
Developed, Open Space: C-D	77	0.6	0.12

Developed, Open Space: B	55	1.64	0.12
Wetlands, Non-Forested: NoData	85	0.35	0.12
Wetlands, Non-Forested: D	85	0.35	0.12
Wetlands, Non-Forested: C-D	85	0.35	0.12
Wetlands, Non-Forested: B	85	0.35	0.12
Undeveloped, Shrub-Scrub: NoData	77	0.6	0.12
Undeveloped, Shrub-Scrub: D	77	0.6	0.12
Undeveloped, Shrub-Scrub: C-D	74	0.7	0.12
Undeveloped, Shrub-Scrub: B	56	1.57	0.12
Landfill: NoData	99	0.02	0.12
Landfill: D	99	0.02	0.12
Landfill: C-D	99	0.02	0.12
Landfill: B	99	0.02	0.12

Figure 16 - Infiltration Constants by Soil Type