

Exhibit W. Port of Columbia Site Preliminary Geotechnical Engineering Report & DOTD Soil Borings

Bryant Hammett & Associates, LLC 6885 Hwy. 84 West Ferriday, Louisiana 71334

March 27, 2014

Attn: Mr. Keith Capdepon Jr., P.E.

Re: Preliminary Geotechnical Engineering Services Report Tier 3 Industrial Park Facility Columbia, Louisiana PSI Project Number: 0257374

Dear Mr. Capdepon:

Thank you for choosing Professional Service Industries, Inc. (PSI) as your consultant for the referenced project. Per your authorization, PSI has completed a preliminary geotechnical engineering study for the referenced project. The results of the study are discussed in the accompanying report.

If you have any questions pertaining to this report, please contact our office at (318) 387-2327. PSI would be pleased to continue providing geotechnical services throughout the implementation of the project, and we look forward to working with you and your organization on this and future projects.

Respectfully submitted, **PROFESSIONAL SERVICE INDUSTRIES, INC.**

Ali Hijazi Branch Manager

Martin L. Skyrman, P.E. Principal Consultant

Matthew D. Redmon, P.E. Project Engineer

Name: Matthew D. Redmon, P.E. Date: March 27, 2014 License No.: 36757

THIS PRELIMINARY DOCUMENT IS NOT TO BE USED FOR CONSTRUCTION, BIDDING, RECORDATION, CONVEYANCE, SALES, OR AS THE BASIS FOR THE ISSUANCE OF A PERMIT.

Table of Contents

Page N	10.
PROJECT INFORMATION	. 1
Project Authorization Project Description Purpose and Scope of Services	. 1
SITE AND SUBSURFACE CONDITIONS	. 2
Site Location and Description Site Geology Subsurface Conditions Water Level Measurements	. 2 . 2
PRELIMINARY GEOTECHNICAL RECOMMENDATIONS	.3
Site Preparation Preliminary Foundation Recommendations Slab on Grade Earthquake and Seismic Design Consideration	. 5 . 6
CONSTRUCTION CONSIDERATIONS	.7
Moisture Sensitive Soils/Weather Related Concerns Drainage and Groundwater Concerns Excavations REPORT LIMITATIONS	. 7 . 7
Appendix - Site Vicinity Map	, 0

Appendix - Site Vicinity Map Boring Location Plan Boring Logs Key to Symbols

PROJECT INFORMATION

Project Authorization

The following Table summarizes (in chronological order) the Project Authorization History for the services performed and represented in this report by Professional Service Industries, Inc. (PSI):

PROJECT TITLE: INDUSTRIAL PARK								
Document and Reference Number	Date	Requested/Provided By						
Request for Proposal	11/21/2013	Mr. Keith Capdepon Jr. of Bryant Hammett & Associates						
PSI Proposal Number: 109866	11/22/2013	Mr. Ali Hijazi of PSI						
Notice to Proceed	2/25/2014	Mr. Keith Capdepon Jr. of Bryant Hammett & Associates						

Project Description

Project information indicates that the proposed project will potentially involve the development of a 175 acre Tier 3 Industrial Park Facility. No information regarding building(s) location or size, equipment(s) location or size, loads, or site grading was provided to PSI at the time this report was written. It is understood that this report is to provide an overview of the site based on the four (4) borings conducted in the proposed construction areas.

The preliminary geotechnical recommendations presented in this report are based on the available project information and the subsurface materials described in this report. If any of the information noted above is incorrect, please inform PSI in writing so that we may amend the recommendations presented in this report if appropriate and if desired by the client. PSI will not be responsible for the implementation of its recommendations when it is not notified of changes in the project.

Purpose and Scope of Services

The purpose of this preliminary geotechnical exploration was to determine the various soil profile components, determine the general engineering characteristics of the materials encountered, provide information to the design engineers and architects which could be used to formulate preliminary design criteria, and to aid in the development of a design level study for obtaining final design information.

PSI's contracted scope of services included drilling four (4) soil test borings, select laboratory testing, and preparation of this geotechnical report. This report briefly outlines the testing procedures, presents available project information, describes the site and subsurface conditions, and presents recommendations regarding the following:

- Grading procedures for site development.
- Preliminary foundation recommendations.
- Comments regarding factors which could impact construction and performance of the proposed construction.

It should be noted that the number of borings conducted in our exploration is not considered comprehensive for determining geotechnical recommendations across a site encompassing 175 acres. This report only provides preliminary recommendations, and PSI should be retained to provide a more detailed scope and exploration once a final site plan has been developed.

The scope of services did not include an environmental assessment for determining the presence or absence of wetlands, or hazardous or toxic materials in the soil, bedrock, surface water, groundwater, or air on, below, or around this site. Any statements in this report or on the boring logs regarding odors, colors, and unusual or suspicious items or conditions are strictly for informational purposes.

SITE AND SUBSURFACE CONDITIONS

Site Location and Description

The Tier 3 Industrial Park is located south of the intersection of Riverton Camp Road and Highway 165 in Columbia, Louisiana. The new industrial park will be located in the areas of Sections 19,41,42 & 43, T14N-R4E & Sections 13,24 & 44, T14N-R3E. The site Latitude and Longitude are approximately N 32.187236° and W 92.105873°, respectively.

The subject property is currently developed for agricultural purposes. The current adjoining and surrounding properties consist of farmland on all sides and residential areas to the north and east. The Ouachita River is located approximately 0.3 miles west of the site.

Site Geology

Based on the Geologic Map of Louisiana (1984) provided by the Louisiana Geological Society, the proposed site is located on Natural Levees consisting of gray and brown silt, silty clay, some very fine sand, reddish brown along the Red River.

Subsurface Conditions

The site was explored with a total of four (4) borings drilled across the site proposed industrial park. The borings were drilled to depths of 25 feet. Please see the attached Boring Location Plan in the appendix for the approximate locations of the borings.

The boring locations and the boring depths were specified by the owner. PSI personnel staked the borings in the field by measuring distances from available surface features and using a handheld GPS system. The borings were drilled with a Geoprobe 7822DT ATV drilling rig. Hollow-stem auger drilling techniques were used to advance the boreholes. Samples were generally obtained continuously from the ground surface to a depth of about 10 feet, and at intervals of five (5) feet thereafter.

The soils were generally sampled using standard penetration resistance testing and undisturbed sample collection in general accordance with the requirements of ASTM Designations D-1586 and D-1587, respectively. The samples were identified according to boring number and depth, sealed and encased at the site to protect against moisture loss, and transported to the laboratory in protective containers to prevent damage. All samples obtained during the field exploration were identified and evaluated by experienced geotechnical personnel upon arrival at the laboratory.

The test borings disclosed a layer of loose to medium silt in the upper two (2) feet, followed by a layer of medium to stiff lean clay extending to 10 to 13 feet in Borings B-1 and B-2, and to six (6) feet in Borings B-3 and B-4. Below the clay, very loose to loose silt, and very soft to medium lean clay and silty clay were encountered until boring termination at 25 feet.

The above subsurface description is of a generalized nature to highlight the major subsurface stratification features and material characteristics. The boring logs included in the Appendix should be reviewed for specific information at individual boring locations. These records include soil descriptions, stratifications, penetration resistances, and locations of the samples and laboratory test data. The stratifications shown on the boring logs represent the conditions only at the actual boring locations. Variations may occur and should be expected between boring locations. The stratifications represent the approximate boundary between subsurface materials and the actual transition may be gradual. Water level information obtained during field operations is also shown on these boring logs. Samples not altered by laboratory testing will be retained for sixty (60) days from the date of this report and then will be discarded.

Water Level Measurements

Free groundwater was not observed in the borings upon completion, indicating that groundwater at the site at the time of the exploration was either below the terminated depths of the borings, or that the soils encountered are relatively impermeable. Although free groundwater was not encountered at this time, the groundwater levels at the site can fluctuate based on variations in rainfall, evaporation, surface run-off and other related hydro-geologic factors. PSI recommends the contractor determine the current groundwater depth at the time of construction.

PRELIMINARY GEOTECHNICAL RECOMMENDATIONS

The in situ clay soils between two (2) and six (6) feet across the site are generally considered adequate for supporting lightly loaded structures on a shallow foundation system, if the site is prepared as subsequently recommended. In order to use conventional shallow foundations at the site, it will be necessary to undercut and waste the medium to loose silt at the location of any structure footprint, and for five (5) feet beyond its perimeter. The depth of undercut approaches approximately two (2) feet.

Loose to very loose silt was encountered at depths ranging from six (6) to thirteen (13) feet below existing grade. This soil layer will control the allowable bearing pressure and settlement of the proposed structures if large structural loads are planned. If a larger allowable bearing pressure is required to accommodate the anticipated design loads, other construction methods or foundation types may be considered. Deep foundation recommendations can be provided, however additional drilling will be required to explore the soils at a greater depth than those explored under this scope of service.

The silty soils had low plasticity index (PI) values and will therefore be very moisture content sensitive. If wet conditions exist during construction, this can cause significant difficulty in the preparation of the building pad areas. We recommend the construction take place during warmer and drier times of the year. In order for construction to progress in wetter periods of the year, it may necessary to replace the subgrade soil with select fill in the construction areas or cement stabilize the existing subgrade soil.

The following preliminary geotechnical-related recommendations have been developed on the basis of the subsurface conditions encountered and PSIs' understanding of the proposed development. Should changes in the project criteria occur, a review must be made by PSI to determine if modifications to our recommendations will be required.

Site Preparation

PSI recommends all silt, topsoil, organic material, loose and soft soils or other unsuitable material at the site be stripped from the site, and either wasted or stockpiled for later use in non-foundation areas. In general, PSI anticipates an average stripping depth of approximately two (2) feet. There may be areas of the site that require additional or possibly less stripping. Voids resulting from the removal of trees, organic material, or unsuitable soils should be backfilled in accordance with the following recommendations for fill placement as soon as practical.

PSI recommends that areas to receive pavement be undercut to a depth of at least one (1) foot below existing site grade, and subsequently backfilled with engineered fill in accordance with the following recommendations. Alternatively, paving areas may be cement stabilized in lieu of undercutting and backfilling activities. Detailed traffic information will be required for more specific pavement section recommendations.

In this region, the silts and lean clays can undergo a significant loss of stability when construction activities are performed during wetter portions of the year. PSI anticipates that the soils in the project area can become easily disturbed if subjected to conventional rubber tire or narrow track-type equipment. Soils that become disturbed would need to be excavated and replaced; however, this remedial excavation may expose progressively wetter soils with depth, thus compounding the problem condition. Thus, a normal approach to subgrade preparation may not be possible. Appropriate wide-track equipment selection should aid in minimizing potential disturbance.

After stripping and required excavation, the subgrade in the construction areas should be proofrolled with a loaded tandem axle dump truck or similar pneumatic tired vehicle having a minimum gross weight of 20 tons. Soils observed to rut or deflect excessively under the moving load should be undercut and recompacted as recommended for select fill or replaced with properly compacted select fill material. Proofrolled soils should be scarified for a depth of at least eight (8) inches and recompacted to 95 percent or greater of the soils Standard Proctor (ASTM D-698) maximum dry density. Proofrolling and undercutting activities should be performed during a period of dry weather and witnessed by a representative of the geotechnical engineer.

After subgrade preparation and observation have been completed, fill placement required to establish design grades may begin. Fill used at the site should be select material free of organic or other deleterious materials and have a maximum particle size of less than three (3) inches. Select fill should also have a liquid limit of 40 or less with plasticity index values between 10 and 20. Excavated in-situ soils meeting select fill criteria are suitable for reuse as fill. A representative of PSI should be on-site to observe, test, and document the placement of the fill. If the fill is too dry, water should be uniformly applied and thoroughly mixed into the soil by disking or scarifying. Close moisture content control will be required to achieve the recommended degree of compaction. If fill placement must proceed during a wetter time of the climate cycle, it will likely be difficult to compact the on-site soils, and the use of imported select fill materials or cement stabilization will likely be required.

Fill should be placed in maximum loose lifts of eight (8) inches, moisture conditioned and compacted to at least 95% of the materials' Standard Proctor (ASTM D-698) maximum dry density. The required select fill density will be more readily attained if compaction is done within a range of -1 to +2 percent of the optimum moisture content. Compacted fill should extend a minimum of five (5) feet beyond the foundation perimeters prior to sloping in fill areas.

Each lift of compacted fill should be tested and documented by a representative of the geotechnical engineer prior to placement of subsequent lifts. Tests should be performed at a frequency not less than one (1) test for every 2,500 square feet of fill placed in structure areas and not less than one (1) test for every 5,000 square feet of fill placed in non-load bearing areas.

Tested fill materials not meeting either the required dry density or moisture content range shall be recorded, the location noted, and reported to the Contractor and Owner. A re-test of that area should be performed after the Contractor performs remedial measures.

Preliminary Foundation Recommendations

Structures can be supported on a shallow foundation system using both spread and/or continuous footings bearing at least 18 inches below final grade in stiff in-situ clay soil or properly compacted select fill. Spread footings for building columns and continuous footings for walls bearing in compacted soil can be designed for net allowable soil bearing capacities of 1,800 pounds per square foot (psf) and 1,400 psf, respectively. These values are in consideration of dead loads plus sustained live loads and may be increased by one third when accounting for transient live loads. Minimum dimensions of 18 and 24 inches are recommended for continuous and spread footings, respectively. To minimize settlement, the maximum spread footing dimension should be limited to five (5) feet.

Foundation excavations should be observed and documented by a representative of PSI prior to steel or concrete placement to verify the foundation materials are consistent with the materials discussed in this report and capable of supporting the design loads. Soft or loose soil zones encountered at the bottom of the footing excavations, as indicated by blows with a dynamic cone penetrometer (DCP) equivalent to N-values of less than 8 blows per foot, should be removed to a suitable soil level, and replaced with compacted select fill. Fill placed below the foundations where unsuitable materials are removed should extend one (1) foot outside the foundation limits for every one (1) foot in thickness between the intended bearing surface and the underlying, suitable natural soils.

After opening, footing excavations should be observed and concrete placed as quickly as possible to avoid exposure of the footing bottoms to wetting and drying. Surface run-off water should be drained away from the excavations and not be allowed to pond. If possible, the foundation concrete should be placed the same day the excavation is made. If footing excavations are required to be left open for more than one (1) day, they should be protected to reduce evaporation or entry of moisture.

There is the possibility that soft and/or compressible soil zones may exist which can cause excessive total and/or differential settlement. Settlement estimates can be provided once final plans are more complete.

If a larger allowable bearing pressure is required to accommodate the anticipated design loads and the potential for settlement to exceed an inch, under the larger structural loads, is not satisfactory to the client, other construction methods or foundation types may be considered. Deep foundation recommendations can be provided, however additional drilling will be required to explore the soils at a greater depth than those explored under this scope of service.

Slab on Grade

If slabs are to bear on properly compacted select fill as described in the site preparation section, a modulus of subgrade reaction, k value, of 100 pounds per cubic inch (pci) based on correlation to values typically resulting from a 1 ft. x 1 ft. plate load test may be used in the slab design. However, depending on how the slab load is applied, the value will have to be geometrically modified. The value should be adjusted for larger areas using the following expression for cohesive and cohesionless soil:

Modulus of Subgrade Reaction, $k_s = (\frac{k}{R})$ for cohesive soil and

$$k_{\rm s} = k \left(\frac{B+1}{2B}\right)^2$$
 for cohesionless soil

where: k_s = coefficient of vertical subgrade reaction for loaded area,

k = coefficient of vertical subgrade reaction for one square foot area, and

B = effective width of area loaded, in feet

A suitable vapor retarder should be placed on the prepared subgrade to act as a vapor barrier as required by codes or manufacturer requirements.

Earthquake and Seismic Design Consideration

The 2012 International Building Code requires a site class for the calculation of earthquake design forces. This class is a function of soil type (i.e., depth of soil and strata types). Based on the estimated depth to rock and the estimated shear strength of the soil at the boring locations, Site Class "E" is recommended. It should be noted that our borings extended to a depth of 25 feet whereas IBC site classifications are based on the upper 100 feet of the soil profile. Based on the USGS website and Site Class "E", the ground motion values near latitude N 32.187236° and longitude W 92.105873° are as follows:

Period (seconds)	Mapped Spectral Response Acceleration	Site Coefficients	Max. Spectral Acceleration Parameters	Design Spectral Acceleration Parameters
0.2 (S _s)	0.137 g	F _a = 2.5	S _{MS} = 0.342 g	S _{DS} = 0.228 g
1.0 (S ₁)	0.078 g	$F_v = 3.5$	S _{M1} = 0.272 g	S _{D1} = 0.181 g

The Site Coefficients, F_a and F_v were interpolated from IBC 2012 Tables 1613.3.3(1) and 1613.3.3(2) as a function of the site classifications and the mapped spectral response acceleration at the short (S_s) and 1 second (S_1) periods. A liquefaction analysis was not included in the scope of this exploration. Deeper borings would be necessary to evaluate an improvement in site class as well as susceptibility of soils to liquefaction and seismic-induced settlement.

CONSTRUCTION CONSIDERATIONS

Moisture Sensitive Soils/Weather Related Concerns

The soils encountered at this site (i.e. silt and clay) will be very sensitive to disturbances caused by construction traffic when wet. This was evident during our drilling operations. The contractor should be cognizant of the importance of proper maintenance of surface drainage. Depending on weather-related ground conditions, the contractor's maintenance of drainage during construction, and other factors, some difficulty may be encountered by the contractor in achieving compaction on initial lifts of fill placed on loose or soft subgrade. This will be exacerbated by wet weather, particularly if the contractor allows surface drainage to enter and pond in the excavations.

During wet weather periods, increases in the moisture content of the soil can cause significant reduction in the soil strength and support characteristics. In addition, soils that become wet may be slow to dry and thus significantly retard the progress of grading and compaction activities. It will, therefore, be advantageous to perform earthwork and foundation construction activities during dry weather. Earthwork activities performed during cooler, wetter months may certainly offer more difficulties than if performed during warmer, drier periods.

If construction is performed during wet conditions, work platforms may be necessary; these can be created for earthwork by mixing soil and hydrated lime, cement, or combinations of these additives.

Drainage and Groundwater Concerns

Water should not be allowed to collect in the foundation excavations, on floor slab areas, or on prepared subgrade areas either during or after construction. Undercut or excavated areas should be sloped toward one corner to facilitate removal of any collected rainwater, groundwater, or surface runoff. Positive site surface drainage should be provided to reduce infiltration of surface water around the perimeter of the building and beneath the floor slabs. The grades should be sloped away from the building and surface drainage should be collected and discharged such that water is not permitted to infiltrate the backfill and floor slab areas of the building.

Any water accumulation should be removed from excavations by pumping. The Geotechnical engineer should be consulted in the event excessive and uncontrolled amounts of seepage occur.

Excavations

In Federal Register, Volume 54, No. 209 (October 1989), the United States Department of Labor, Occupational Safety and Health Administration (OSHA) amended its "Construction Standards for Excavations, 29 CFR, part 1926, Subpart P". This document was issued to better insure the safety of workmen entering trenches or excavations. It is mandated by this federal regulation that excavations, whether they be utility trenches, basement excavations or footing excavations, be constructed in accordance with the applicable OSHA guidelines. It is our understanding that these regulations are being strictly enforced and if they are not closely followed, the owner and the contractor could be liable for substantial penalties.

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. The contractor's "responsible person", as defined in 29 CFR

Part 1926, should evaluate the soil exposed in the excavations as part of the contractor's safety procedures. In no case should slope height, slope inclination, or excavation depth, including utility trench excavation depth, exceed those specified in local, state, and federal safety regulations.

We are providing this information solely as a service to our client. PSI does not assume responsibility for construction site safety or the contractor's or other party's compliance with local, state, and federal safety or other regulations.

REPORT LIMITATIONS

The preliminary recommendations submitted in this report, are based on the available subsurface information obtained by PSI and the project information furnished by the Client for the proposed project. This report only provides preliminary recommendations. After the plans are more complete, PSI should be retained and provided the opportunity to review the final design plans and to provide a more detailed scope and exploration. At this time, it may be necessary to submit supplementary recommendations. If PSI is not retained to perform these functions, PSI will not be responsible for the impact of those conditions on the project. This report has been prepared for the exclusive use of Bryant Hammett and Associates for the proposed Tier 3 Industrial Park to be constructed in Columbia, Louisiana.

Appendix

SITE VICINITY PLAN

AH

MS

CHKD:

COLUMBIA, LOUISIANA

PSI PROJ. NO.: 0257374

SHEET NO .:

1

Engineering • Consulting • Testing

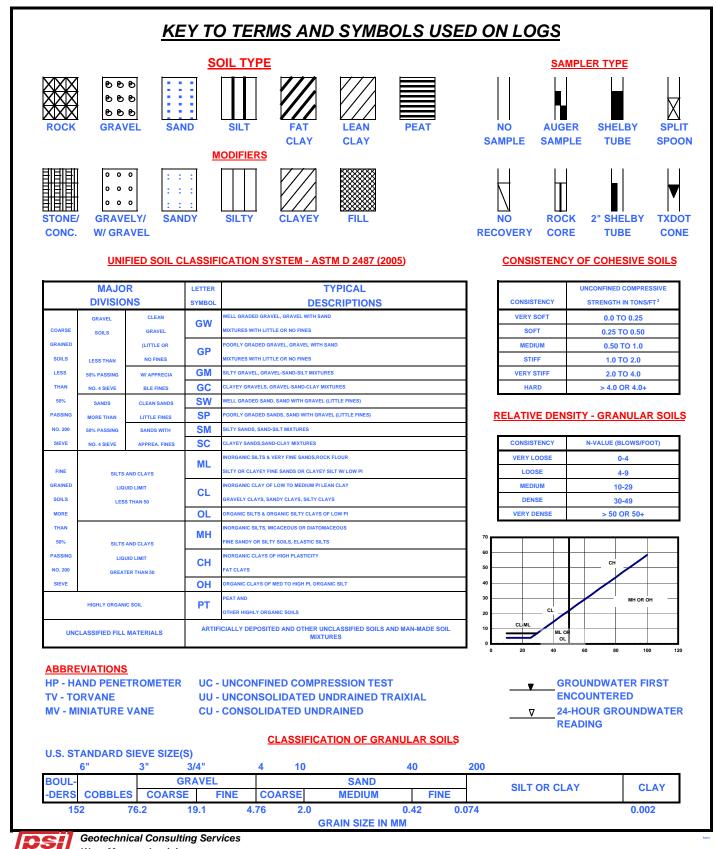
BORING LOCATION PLAN

	GEOTECHNICAL ENGINEERING SERVICES						
		RIVERTON CAMP ROAD COLUMBIA, LOUISIANA	DRAWN	AH			
SHEET NO .:	1	PSI PROJ. NO.: 0257374	CHKD:	MS			

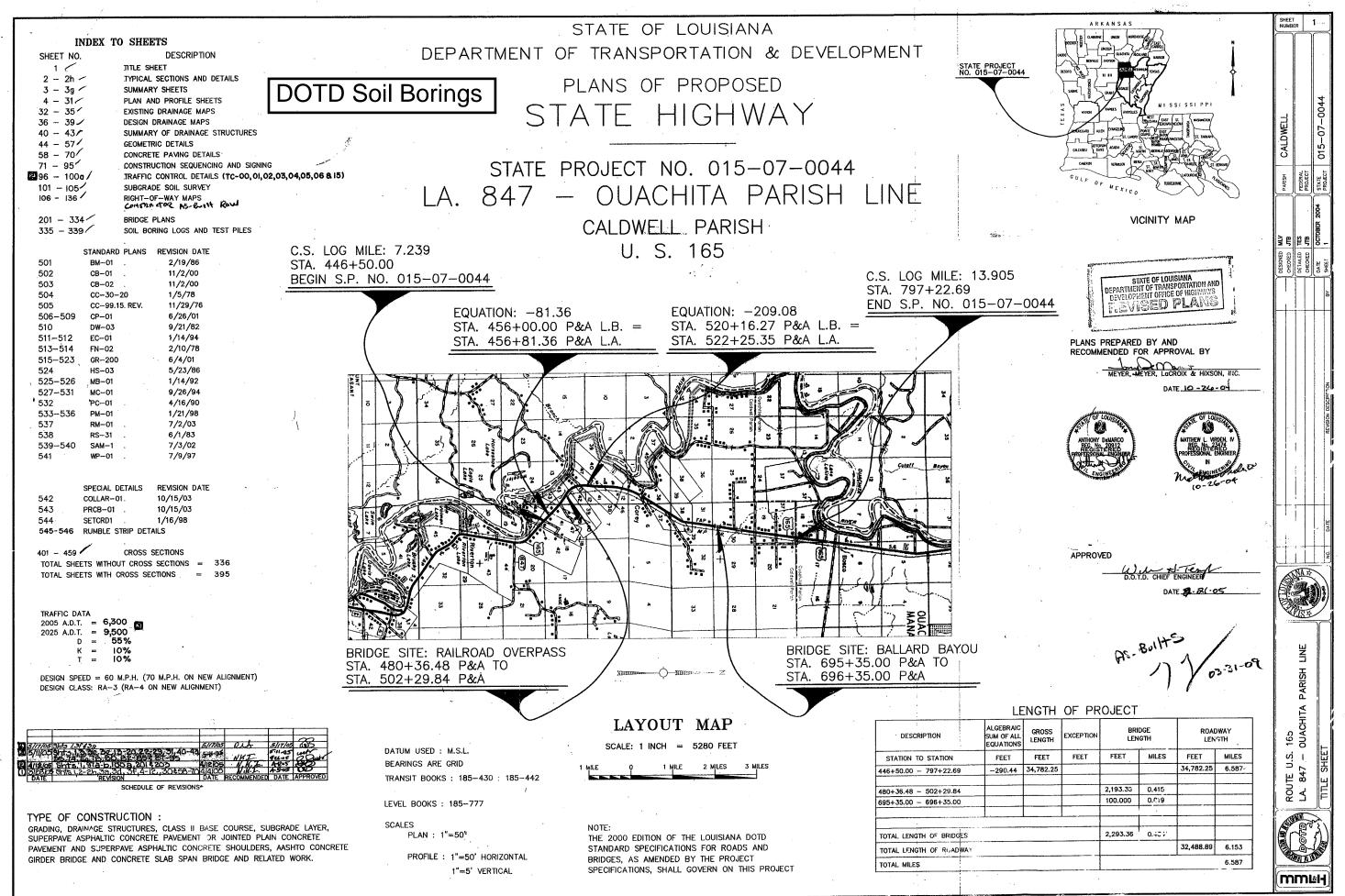
Log of Boring B-1 **Columbia Industrial Park** Columbia, Louisiana Type of Boring: Hollow-Stem Auger PROJECT NUMBER: 0257374 % PASSING NO. 200 MOISTURE CONTENT (%) USCS GROUP SYMBOL UC (tsf) (D2166) UU (tsf) (D2850) UNIT DRY WT. (Ibs/ft³) (BLOWS/FOOT) Hand Pen. (tsf) PLASTIC LIMIT LIQUID LIMIT PLASTICITY INDEX DEPTH, FEEI Torvane tsf SAMPLES SPT-N Surface Elevation: Not Recorded SOIL Boring Location Plan: Appendix Sheet 2 SOIL DESCRIPTION ML Medium Brown Silt 17 18 CL Stiff Brown Lean Clay 2.00 1.85 23 30 17 13 Becoming Medium at 4 Feet 1.25 13 5 19 31 18 0.63 1.00 21 0.75 0.72 23 29 17 12 10 ML Loose Brown Silt 8 23 15 20 4 28 24 4 20 Becoming Very Loose at 23 Feet 2 26 91 25 **Boring Terminated at 25 Feet** 30 35 40 45 50 Depth of Boring: 25 FEET Depth to Free Groundwater: Not Encountered Date Drilled: March 5, 2014

Geotechnical Consulting Services West Monroe, Louisiana

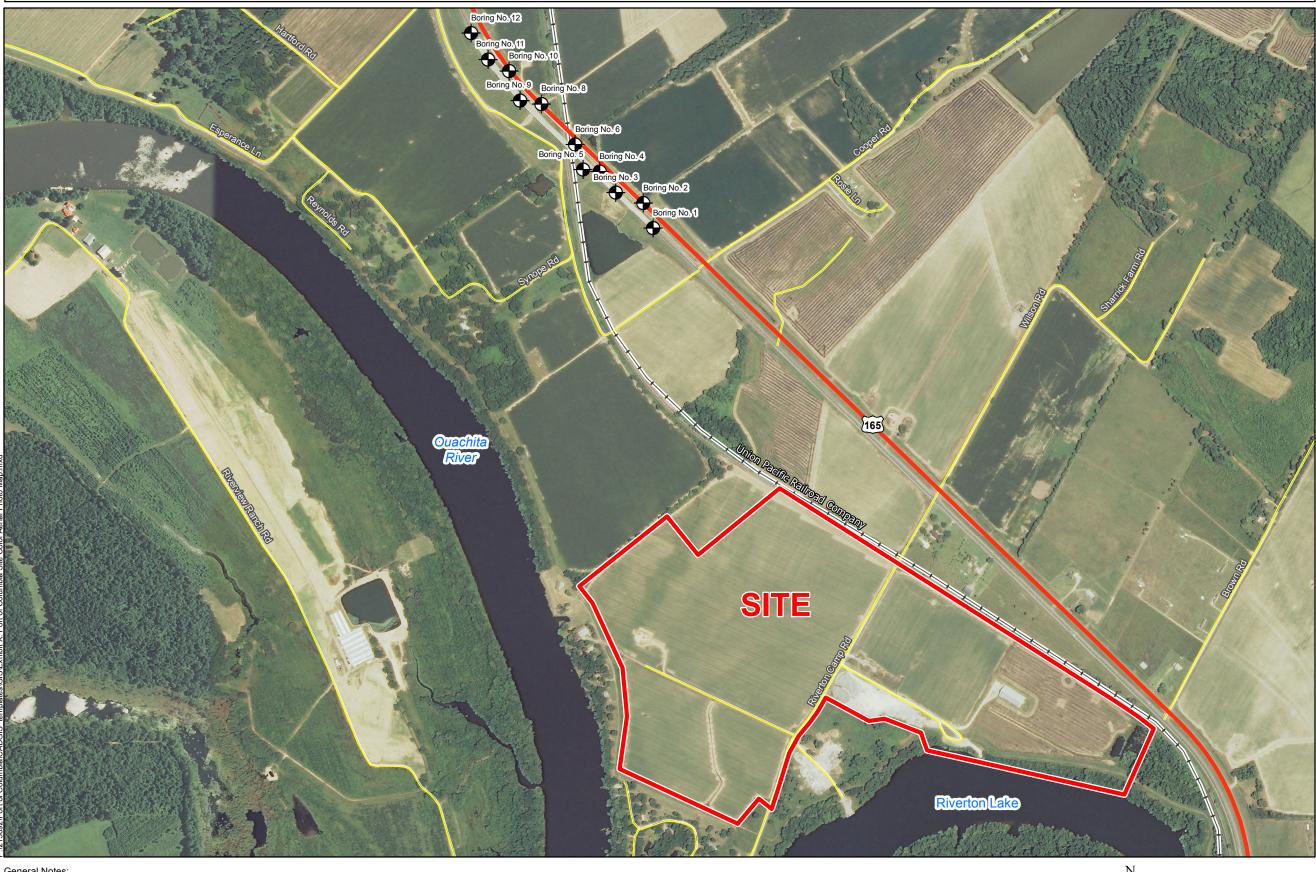
Log of Boring B-2 **Columbia Industrial Park** Columbia, Louisiana Type of Boring: Hollow-Stem Auger PROJECT NUMBER: 0257374 % PASSING NO. 200 MOISTURE CONTENT (%) USCS GROUP SYMBOL UC (tsf) (D2166) UU (tsf) (D2850) UNIT DRY WT. (Ibs/ft³) (BLOWS/FOOT) Hand Pen. (tsf) PLASTIC LIMIT LIQUID LIMIT PLASTICITY INDEX DEPTH, FEET Torvane tsf SAMPLES SPT-N Surface Elevation: Not Recorded SOIL Boring Location Plan: Appendix Sheet 2 SOIL DESCRIPTION ML Loose Brown Silt 5 22 NP NP NP CL Medium Brown Lean Clay 0.75 0.71 22 28 17 11 1.25 27 5 25 19 9 1.48 1.50 23 1.00 1.19 26 29 20 9 10 ML Very Loose Brown Silt 2 31 15 NP NP NP 90 1 28 20 CL Stiff Brown Lean Clay 1.75 1.13 36 25 **Boring Terminated at 25 Feet** 30 35 40 45 50 Depth of Boring: 25 FEET Depth to Free Groundwater: Not Encountered Date Drilled: March 5, 2014


Geotechnical Consulting Services West Monroe, Louisiana

	Log of Boring B-3 Columbia Industrial Park Columbia, Louisiana													
Туре	of Bo	oring:	Hollow-Stem Auger					PR	OJEC	T NUN	IBER:	02573		
DEPTH, FEET	SOIL	USCS GROUP SYMBOL	Surface Elevation: Not Recorded Boring Location Plan: Appendix Sheet 2 SOIL DESCRIPTION	SPT-N (BLOWS/FOOT)	Hand Pen. (tsf)	Torvane tsf	UC (tsf) (D2166)	UU (tsf) (D2850)	UNIT DRY WT. (Ibs/ft ³)	MOISTURE CONTENT (%)	LIQUID LIMIT	PLASTIC LIMIT	PLASTICITY INDEX	% PASSING NO. 200
	П	ML	Medium Brown Silt	5						23				
	\not	CL	Medium Brown Lean Clay		1.00		0.94			29	38	20	18	
5					1.00				-	25				
		CL- ML	Medium Brown Silty Clay	6						22	26	20	6	
		IVIL	X	4						26	25	21	4	
10	XX													
	\mathcal{M}													
	ΪÍ	ML	Very Loose Brown Silt with Sand	WOH						32				
15														
			X	woн						26	NP	NP	NP	
20														
25			X	1						28				84
25			Boring Terminated at 25 Feet											-
30														
35														
40														
														<u> </u>
45														
50														
Depth Date			: 25 FEET March 5, 2014	Dep	th to	Free	Grou	Indw	ater:	Not	Enco	unte	red	
			Geotechnical Consulting Services West Monroe, Louisiana											


Log of Boring B-4 **Columbia Industrial Park** Columbia, Louisiana Type of Boring: Hollow-Stem Auger PROJECT NUMBER: 0257374 % PASSING NO. 200 MOISTURE CONTENT (%) USCS GROUP SYMBOL UC (tsf) (D2166) UU (tsf) (D2850) UNIT DRY WT. (Ibs/ft³) (BLOWS/FOOT) Hand Pen. (tsf) LIQUID LIMIT PLASTIC LIMIT PLASTICITY INDEX DEPTH, FEEI Torvane tsf SAMPLES SPT-N Surface Elevation: Not Recorded SOIL Boring Location Plan: Appendix Sheet 2 SOIL DESCRIPTION CL Stiff Brown Lean Clay 1.25 1.07 25 1.25 1.19 24 32 17 16 5 1.25 1.23 26 ML Loose Brown Silt NP NP NP 6 27 Becoming Very Loose at 8 Feet wон 31 10 wон 33 NP NP NP 15 CL Very Soft Brown Lean Clay 0.25 15 35 34 19 20 Becoming Medium at 23 Feet 0.75 0.55 38 25 **Boring Terminated at 25 Feet** 30 35 40 45 50 Depth of Boring: 25 FEET Depth to Free Groundwater: Not Encountered Date Drilled: March 5, 2014

Geotechnical Consulting Services West Monroe, Louisiana



West Monroe, Louisiana

			•	<u> </u>	<u></u>	· · ·					· · · · · · · · · · · · · · · · · · ·				· · · · ·	254.0 M 1 4 5	SH NU
	SAMP	LE LEGEND															· .
· I	(3) S-3	STY LM A-4 (05) LL 24 PI 7	(0.0.2.3.79)		(44) \$-44.	\$TYLM A-4 (05) LL18 PI10	(0.0.1.6.76)	<u> </u>		SI A-4 (00) NP	(0+0+0+6+90)	• •		· ·			
	(3 S−4	STY LM A-4 (06) LL 27 PI 9	(0.0.1.16.67)		(18) S-48	SI A-4 (01) LL 13 PI6	(0.0.1.3.81)	\mathbf{U}	S-86	STY LM A-4 (00) LL 13 PI 4	(0.0.4.8.77)		• • •			·· .	
{ ·	(5 S-5	STY CL LM A-7-6(23) LL 46 PI 22	(0+0+1+5+67)		(47) ·S47	SI A-6 (07) LL 18 PI 12	(0.0.1.2.82)	\cup	S-90	STY LM A-4 (00) NP	(0.0.8.17.71)	LEGE	ND	-	* .		
	6 S-6	SI A-4 (00) NP	(0.0.1.11.80)		(46) S-46	STY LM A-4 (00) NP	(0.0.15.27.50)	\cup	S-89	STY LM A-4 (OO) NP	(0.0.7.15.74)		CATES LOCATION & IDEN	TIFICATION OF SAMPL	E TESTED IN LAB	ORATORY	
	(7) S-7	SI A-6 (07) LL 21 PI 11	(0.0.1.8.81)		50 S-50	SI. A-4 (00) NP	(0+0+1+3+85)	92	S-92	STYLM A-6 (09)LL29 PI14	(0.0.9.14.64)	0	ICATES MATERIAL SAME A	-			
	(8) S-8	SI A-4 (00) NP	(0.0.0.8.84)		49 S-49	SI A-4 (00) NP	(0.0.0.2.90)	(91)	S-91	STYLM A-6 (06) LL 25 PI11	(0+0+9+14+64)		5) INDICATES SUBGRADE ICATES LIQUID LIMIT	SOIL GROUP & GROUP	INDEX		·
	() S-9	SI A-4 (00) NP	(0.0.1.8.87)		(51) S-51	STY LM A-4 (00) NP	(0.0.12.15.67)	94	S-94	SI A-4 (00) NP	(0.0.1.5.86)	PI - IND	ICATES PLASTICITY INDE	X	••		
	(10) S-10	SI A-4 (00) NP	(0.0.0.2.90)		(84) S-54	SI A-6 (07) LL 18 PI 12	(0.0.0.2.83)	93	S-93	SI A-4 (00) NP	(0.0.1.5.86)		ICATES NON PLASTIC 3,79) INDICATES %RETAI	INED ON #4, #10, #40), #200 SIEVES,	AND % SILT (TR 407	U I
	(11) S-11	A-4 (00) NF STY CL LM A-6 (11) LL 30 PI 12			53 S-53	SI A-4 (00) NP	(0+0+1+3+94)	95	S-95	SI A-4 (04) LL 20 PI 7	(0+0+1+1+85)		• • • •				
	(12) S-12	A-6 (11) LL 30 PI 12 STY LM A-6 (15) LL 33 PI 16	(0.0.1.2.74)		(52) S-52	SI A-4 (00) NP	(0+0+0+5+87)	97	S-97	STY LM. A-6 (07) LL 20 PI 11	(0.0.1.3.79)	RT. CL	· .		· .		
	(13) S-13		(0.0.0.3.78)		57 S-57	A4 (00) NP STYLM A4 (03)LL 16 PI8		96	S-96	SI A-4 (03) LL 19 PI 6	(0.0.1.1.85)	30 FT F	INDICATES BORING LOCAT	ION & IDENTIFICATIO	N .	. •	
	(14) S-14	STY LM A-6 (12) LL 30 PI 13 STY CL	(0,0,2,2,79)			A⊸4 (03) LL 16 PI8 STYLM A⊸6 (06) LL 19 PI11	(0.0.1.3.79)	Ċ	S-98	A-4 (03) LL 19 PI 6 STY LM A-6 (05) LL 20 PI 11	(0.0.4.17.68)						
1	(14) 3-14 (15) S-15	STY CL A-7-6(29) LL 47 PI 27 SI	(0.0.1.2.62)	, .	(55) S-55		(0.0.1.5.77)	\sim	S99	A-6 (05) LL 20 PI 11 STY LM A-6 (08) LL 25 PI 12	,	SAMPI FS	CLASSIFIED ACCORDING	TO TR 423			· ·
		SI A-4 (00) NP	(0.0.2.3.87)		69 S-59	STY LM A-4 (04) LL 18 PI 10 STY LM	(0.0.7.10.66)		S-100	A-6 (08) LL 25 PI 12 SI A-4 (07) LL 22 PI 10	(0.0.4.8.77)	FIELD B	OOKS 58-257 & 58-263	× ×			
	(16) S-16	SI A-4 (07) LL 26 PI 9	(0.0.2.2.83)	100 A		STY LM A-6 (12) LL 24 PI 15	(0.0.1.1.79)	101	S-101		(0.0.0.3.82)		PORTLAND CEMENT CONCRE AND CLAY GRAVEL			· · ·	
	(17) S-17	SI A-6 (11) LL 27 PI 13	(0.0.1.2.84)		\cup	STYLM A-6 (04) LL 19 PI 11	(0.0.16.9.58)			STYLM A-6 (08)LL26 PI1/2 SI	(0,0,9,7,65)					•	
	(18) S-18	SI A-4 (03) LL 25 PI 4	(0.0.1.2.86)		62 S-62	A-4 (02) LL 13 PI 7	(0.0.3.1.81)		S-102	SI A-4 (07) LL 22 PI 10	(0.0.1.3.81)		••••••••••••••••••••••••••••••••••••••		•		<u>,</u>
	(19) S-19	SI A-4 (06) LL 26 PI 7	(0.0.1.2.89)		61 S-61	SI A-4 (00) NP	(0.0.1.1.87)	(1) (1)		SI A-4 (03) LL 15 PI 8	(0.0.1.4.80)	E>	KISTING RO	ADWAY AND	SHOULD	ERS	
	(22) S-22	STY CL LM A-4 (06) LL 21 PI 10	(0.0.2.3.72)		60 S-60	LM A4 (00) NP -	(0.0.18.29.42)		S-104	STYLM A-4 (05)LL 18 PI10	(0.0.4.8.77)	- S & A	LOCATION	ASPHALTIC CONCRETE SURFACING	BASE	WIDTH	
	21 S-21	SI A-4 (06) LL 26 PI 8	(0.0.1.4.85)		64 S-64	STYLM A-6 (10) LL 22 PI14	(0,0,1,1,79)	106	S-106	SI A-4 (00) NP	(0,0,4.8,80)	S & A STATION	LUCATION	SURFACING			
	20 S-20	SI A-4 (00) NP	(0+0+1+4+89)	•	63 S-63	STYLM A-4 (01) LL 15 PI8	(0.0.17.15.55)	105	S-105	SI A-4 (04) LL 17 PI9	(0,0,1,2,80)		RIGHT SHOULDER	2.0"	8.0" SCG	7'3"	
	23 S-23	SI A-4 (00) NP	(0.0.1.4.89)	•	67 S67	SI . A-6 (09) LL 19 PI 14	(0.0.4.1.80)	107	S-107	STY LM A-6 (06) LL 21 PI 11	(0.0.4.8.75)	124+69	LEFT LANE	10.5"	PCCP		
	· (24) S-24	SI A-4 (09) LL 30 PI 10	(0.0.1.2.85)		66 S-66	SI A-6 (07) LL 18 PI 12	(0.0.3.2.80)	108	S-108	STYLM A-4 (03) LL 17 PI8	(0.0.1.13.75)		LEFT SHOULDER	3.0"	8.0" SCG	8'2"	
	(25) S-25	SI A-4 (03) LL 27 PI 4	(0,0,1,2,87)		65 S-65	STYLM A-6 (10) LL 22 PI 14	(0.0.3.2.76)	109	S-109	STY LM A-4 (03) LL 27 PI 4	(0,0.0.13.76)		RIGHT SHOULDER	2.0"	9.0" SCG PCCP	8'0" 24'0"	
	26 S-26	SI A-6 (13) LL 32 PI 13	(0,0,1,1,81)		(71) S-71	STY LM A-4 (03) LL 19 PI 7	(0.0.4.9.76)	(112)	S-112	SI A-4 (02) LL 17 PI6	(0.0.1.4.80)	184+50	LEFT LANE	11.0"	PCCP		
	21 S-27	A-6 (13) LL 32 PI 13 SI A-4 (06) LL 27 PI 7			(70) S-70		(0+0+3+5+81)	.(11)	S-111	STY CL LM A-6 (10) LL 27 PI 12	(0.0.1.2.76)	· .	LEFT SHOULDER	3.0"	9.0" SCG	8'0"	··
	28 S-28		(0.0.1.1.85)		68 S-68	LM A-4 (00) NP	(0,0,29,20,47)	(10)	S110	SI A-4 (04) LL 23 PI 6	(0+0+1+4+80)		RIGHT SHOULDER	3.0"	7.0" SCG PCCP	8'2" 24'2"	\$P.
	30 S-30	SI A-4 (00) NP STY CL LM	(0.0.0.4.92)		69 S-69	A-4 (00) NP STY LM A-4 (00) LL 16 PI 5				STY LM A-6 (06) LL 20 PI 11		239+81	LEFT LANE	13.0"	PCCP		
		STY CL LM A-6 (10) LL 31 PI 11	(0.0.1.3.77)		(72) S-72		(0.0.25.11.51)	(11)	S-114	SI A-4 (02) LL 16 PI 7			LEFT SHOULDER	3.0"	7.0" SCG	9"0"	
	29 S-29	SI A-4 (03) LL 24 PI 4	(0,0,0,2,90)		(17) S-77	STYLM A-4 (03)LL19 PIB STYLM	(0.0.9.14.64)	-		A-4 (02) LL 16 PL 7 STY LM A-4 (03) LL 20 PI 7	(0.0.1.4.80)		RIGHT SHOULDER RIGHT LANE	3.0"	7.0" SCG -PCCP	8'5" 24'2"	• •
	(31) S−31	STY CL LM A-6 (15) LL 32 PI 16	(0.0.0.1.76)		_	STY LM A-6 (07) LL 20 PI 11	(0.0.1.6.77)	~			(0.0.1.12.76)	281+00	LEFT LANE	10.0"	PCCP		
	(33) S-33	SI A-4 (OO) NP	(0.0.0.4.88)		\bigcirc	STY LM A-4 (OO) NP	(0.0.1.35.58)			STY LM A-4 (00) LL 15 PI 5	(0.0.5.8.74)		LEFT SHOULDER	3.5"	7.0" SCG	8'3"	
	32 5-32	SI A-4 (06) LL 21 PI 10	(0.0.1.4.84)		(75) S-75	STY LM A-4 (03) LL 17 PI 8	(0,0,0,13,76)	(1) (1)		STY LM A-6 (06) LL 18 PI 12	(0.0.4.8.75)		RIGHT SHOULDER	4.5"	4.0" SCG	8'1" 24'5"	
	34 S-34	SI A-4 (06) LL 21 PI 10	(0.0.1.5.83)		(74) S-74	STY LM A-6 (07) LL 23 PI 14	(0.0.11.15.57)	(19		STY CL LM A-4 (01) LL 18 PI 5	(0.0.1.4.74)	344+50	LEFT LANE	12.0"	PCCP		
	36 S-36	SI A-4 (00) NP	(0.0.0.1.91)		(73) S-73	STYLM A-6 (09)LL26 PI14	(0.0.9.8.64)	~	S-118	STYLM A-4 (05)LL 28 PI7	(0.0.4.8.75)		LEFT SHOULDER	4.5*	4.0" SCG	9'2"	
	35 S-35	SI A-6 (07) LL 21 PI 11	(0.0.1.1.85)	. • •	(78) S-78	SI A-6 (07) LL 20 PI 11	(0.0.0.2.83)	(120)	S-120	SI A-4 (00) NP	(0.0.1.2.88)		RIGHT SHOULDER	7.0"	2.0" SCG	.7'6"	
	37 S-37	STY CL LM A-6 (14) LL 30 PI 15			(81) S-81	SI A-4 (00) NP	(0.0.0.3.91)	(122)	S-122	SI A-4 (00) NP	(0,0,2,3,86)	405+50	LEFT LANE	12.0"	PCCP		
	(40) S-40	STY CL LM A-6 (09) LL 21 PI 13			80 S-80	SI A-4 (00) NP	(0.0.0,3.89)	(121)	S-121	STYLM A-4 (03) LL17 PI8	(0.0.4.8.77)	•	LEFT SHOULDER	3.0"	7.0" SCG	8'6"	
	39 S-39	SI A-4 (06) LL 25 PI 8	(0.0.1.1.81)		(79) S-79	STY LM A-4 (00) NP	(0.0.9.17.66)	(125)	S-125	STY LM A-4 (00) NP.	(0.0.5.12.72)		RIGHT ŠHOULDER	5.0"	6.0" SCG PCCP	8'0" 24'0"	· .
	38 S-38	A-4 (06) LL 25 PI 8 STY LM A-6 (07.) LL 24 PI 12			82 S-82	STY LM A-4 (00) LL 17 PI 4	(0.0.5.9.73)	(124)			(0.0.6.13.66)	465+50	LEFT LANE	12.0" 12.0"	PCCP		
	(43) S43	A-6 (07.) LL 24 PI 12 STY CL LM A-6 (09) LL 21 PI 13			(85) S-85	SI . A-4 (00) NP	(0+0+1+3+92)	(123)	S-123		(0,0,3,8,76)		LEFT SHOULDER	4.0"	5.0" SCG	8'2"	
	(42) S-42				84 S-84	A-4 (00) NP SI A-4 (00) LL12 . PI 0		~	S-126		(0,0,2,4,89)				,	\mathcal{N}	
	(41) S-41	STYLM A-4 (04) LL 17 PI9 STYCL	(0.0.1.4.78)		63 S-63	A-4 (00) LL -12 PI 0 STY LM A-4 (00) LL 16 PI 4	(0.0.0.2.86)	(128)	S-128				. •		/		
		STY CL A-6 (22) LL 33 PI 25		,	68 S-88		(0.0.4.7.75)	(127)	S-127		(0.0.1.2.86)						
	(45) S45	SI A-4 (00) LL 12 PI 6	(0+0,1+6+80)		\checkmark	S1 A-4 (00) NP	(0.0.1.3.92)	Ŭ		A-4 (00) NP	(0.0.3.4.84)		FUK INFU	RMATIONAL	FURFUS	UNL I	1.

Louisiana DOTD Riverton Overpass Soil Boring Location Exhibit

General Notes:

No attempt has been made by CSRS, Inc. to verify site boundary, title, actual legal ownership, deed restrictions, servitudes, easements, or other burdens on the property, other than that furnished by the client or his representative.
Transportation data from 2013 TIGER datasets via U.S. Census Bureau at ftp://ftp2.census.gov/geo/tiger/TIGER2013.
2013 aerial imagery from USDA-APFO National Agricultural Inventory Project (NAIP) and may not reflect current ground conditions.

Λ Λ			Scale	1:10,000
	0	540		1,080
				Feet

DOTD Boring Location Port of Columbia Site Caldwell Parish, LA

Columbia Port Commission

LEGEND

- Site Boundary (171.37 Ac. +/-)
- DOTD Riverton Overpass Soil Borings

Existing Roadway

- Interstate
- US Highway
- 4-Lane State Highway
- Urban State Highway
- Rural State Highway
- Local Roads
- -+ Railroad

NEL	
Date:	10/27/2015
Project Number:	215092
Drawn By:	AMB
Checked By:	JAY

	На 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	0 84,7 DATE OF DRYTHC:	
	20 44.7 (3)	
	Θ_{1}	
	O 30 347 ⊡	
	Θ	
NUMBER NUMBR NUMBER NUMBER		
NOT ONLY Note in a is in a is in a a is is in a a is in a a		
NOT N	<u>59</u> 14.7	
NOTORIO Image: Imag		
	₩ 47 ₩	
	<u> </u>	
	649 TO 53	
	<u>0</u>	
	<u>60</u> -15.3	
	<u>0</u>	
N P Prior Prior </td <td>(F3) (F3)</td> <td></td>	(F3) (F3)	
IT IT <th< td=""><td></td><td></td></th<>		
Image: 1 mol 21 mol 21 mol 21 mol 21 mol 22 mol 21 mol 22 mol		
CR EX 51 IN P 0.000 0.0	10 3	
OR & XLEANOL N P Priority NO P Priority P Priority P		
CR BICLWAR 27 8 00-00 00		
UNTERNATION ASSERTATIONS ADDITIONS SOL PROPERTIES WETDERN: EXAMPLENS CL DEMANG RESISTANCE (TORS) UNTERNAL DATE TAKEN & GAZOGA STR. HO.: DORING NO. 1 STR.: 400-30 STR.: 402-30 STR.: 402-30 LATTUDE: 32* 11* 45.0*1 LOCATION: 57 RT Adapt CL DEMANG RESISTANCE (TORS) LATTUDE: 32* 11* 45.0*1 LOCATION: 57 RT Adapt CL DEMANG RESISTANCE (TORS) LATTUDE: 32* 11* 45.0*1 LOCATION: 57 RT Adapt CL DEMANG RESISTANCE (TORS) LATTUDE: 32* 11* 45.0*1 LOCATION: 57 RT Adapt CL DEMANG RESISTANCE (TORS) LATTUDE: 32* 11* 45.0*1 LOCATION: 57 RT Adapt CL DEMANG RESISTANCE (TORS) LONGTUDE: 92* 07 24.02*1 LOCATION: 59 RT Adapt CL DEMANG RESISTANCE (TORS) LONGTUDE: 92* 07 24.02*1 LOCATION: 59 RT Adapt CL DEMANG RESISTANCE (TORS) LONGTUDE: 92* 07 24.02*1 GOR MALE: SOL PROPERTIES LONGTUDE: 92* 07 24.02*1 LOCATION: 59 RT Adapt CL DEMANG RESISTANCE (TORS) LONGTUDE: 92* 07 24.02*1 LOCATION: 59 RT Adapt CL DEMANG RESISTANCE (TORS) MITTERN: LOCATION: 59 RT Adapt CL DEMANG RESISTANCE (TORS) LOCATION: 59 RT Adapt CL MITTERN: LOCATION: 59 RT Adapt CL	(19) 130 46 3	
BORMO NO. 1 STAL-400+30 INTUDE: 32* 11*45.0*N LOCATIONE 30*LT Adopt CL DRIVNO RESISTANCE (TON8) LATTUDE: 32* 11*45.0*N LOCATIONE 30*LT Adopt CL DRIVNO RESISTANCE (TON8) LOCATIONE 55*RT Adopt CL DRIVNO RESISTANCE (TON8) LATTUDE: 32* 11*45.0*N LOCATIONE 30*LT Adopt CL DRIVNO RESISTANCE (TON8) LOCATIONE 55*RT Adopt CL DRIVNO RESISTANCE (TON8) LONGTUDE: 82* 05*28.0*W DATE TAKEN: 68/2004 STR. NO.: LOCATIONE 55*RT Adopt CL DRIVNO RESISTANCE (TON8) LONGTUDE: 82* 05*28.0*W DATE TAKEN: 68/2004 STR. NO.: LOCATIONE 55*RT Adopt CL DRIVNO RESISTANCE (TON8) LONGTUDE: 82* 05*28.0*W DATE TAKEN: 68/2004 STR. NO.: LOCATIONE 42*LT Ad LONGTUDE: 82* 05*28.0*W DATE TAKEN: 68/2004 STR. NO.: LOCATIONE 42*LT Ad CONT. SECT: LOG MALE: SOUL DR: CONT. SECT: LOG MALE: MITTERLY SOUL PROPERTIES SOUL PROPERTIES CONT. SECT: LOG MALE: MITTERLY SOUL PROPERTIES SOUL PROPERTIES CONT. SECT: LOG MALE: MITTERLY SOUL PROPERTIES SOUL PROPERTIES CONT. SECT: CONT. SECT: CONT. SECT: MITTERLY SOUL PROPERTIES		
NATURODE: 32* 11* 45.04 NN LOCATIONE: 39* LT Adapt, CL DRAWNO REBISTANCE (TONB) LATTRUDE: 32* 11* 45.04 NN DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.82*W DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.82*W DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.82*W DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.42*W DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.42*W DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.42*W DATE TAKEN: 0.42.004 STR. NO.: LONGTUDE: 82* 09* 20.42*W DATE TAKEN: 0.42.004 STR. NO.: CONT. SECT: LOG MALE: SQD. LDR.:	(¹⁹) 140 -75.3	
Underflow: Bit: ND: Underflow: Example: ND: <		
	2 DRIVING RESISTANCE (TONS) 8TR. NO.: 80D. LDR.:	(TONS)
UB = Light = Light UB = Light PLATE(TY NOEX We are the part of the service of the servic	Internet and the second)
No. <td>THIS SLOPHTURE AND SEAL IS AFREED TO THIS DRAWNER ALL CENTRECKTOW THAT THE LABORATORY TECTION ONE AND ANY THE PERCONDUCT DATE SHEED</td> <td>Page To</td>	THIS SLOPHTURE AND SEAL IS AFREED TO THIS DRAWNER ALL CENTRECKTOW THAT THE LABORATORY TECTION ONE AND ANY THE PERCONDUCT DATE SHEED	Page To

S SOL TYPE AND COLOR		C C C C C C C C C C C C C C C C C C C	SOIL TYPE *	REVETY MOSTURE CONTENT CONTENT CONTENT CONTENT CONTENT CONTENT FAULURE	STA - 400-NU LOOATION - 40 LT Anna CL TYPE OF PLE: TYPE OF PLE:	SOB TYPE® AND COLOR	E SANTA RANTERT RAN	37A: 440:38 57 U LOCATION: 47 RY Adupt CL 57 TYPE OF IN- 17PE OF IN- TYPE OF IN- 100 FILMAMER.
BR CLW/CONC	117 21 54 29 0.880 845 19	4.3 DATE OF DRIVING:	BR LEAN CL WITR ORG	123 21 46 24 2.93 3/8 (28)	8.6 DATE OF DRAMAS	OR LEAN CL	122 17 45 23 1.82 M.S. 23	AATED DRIPHY FT.LAR. DATE OF DRIPHY
	119 25 39 12 0.530 YLD (19) 10 5		W/TR ORG	161 23 33 13 0.600 5/8 200	¥	BR CL WIR CONC	114 30 71 41 0.860 . 8/3 3	*
BR SISA	130 24 N P 0.630 M.S. 50		BR CL W/TR ORG & IR OX	110 41 77 46 0.700 5/5 33			108 33 86 52 0.700 B/S (27)	
er sj	129 32 N P 0.350 M.S. (36) _20 4	43	BR GR CL W/IR IR OX	115 35 55 27 0.520 8/5 39 70	85	BR LEAN CL	122 27 34 13 0.310 M.S. 21 20 444	
GR ELASTIC SI Org=12%	113 35 67 34 0.740 578 🕞			112 32 55 35 0.800 5/8 20		GRCL	114 38 59 32 0.780 5/8 3	
W/IR OX	112 32 75 37 1.09 575 (709 30 3	4.3		118 30 58 32 1.03 S/8 239 30	6.5	W/TR IR OX	114 28 88 39 0.960 8/8 22 30 34.4	
OR CL WYORG	113 52 61 30 0.420 5/5 (19)		GR ELASTIC SI	126 21 33 14 1.05 YLD @		GRIEAN CLW/BA	110 28 85 53 0.710 5/5 💬	
GRCLEA	109 37 78 44 1.18 548 509 40 2 138 20 41 20 1.12 W.8. 509	424	BR GR CL W/TR IR OX	116 28 56 20 1.39 578 27 40 1 117 32 52 24 1.28 575 277	6.5	BRGRSICLW/TRIKOX	127 23 30 12 0.650 8/8 22 40 24.4	
BRIEAN CLW/IR OX	128 20 41 20 5.58 M(8. 619 5.6		GRELWIRINOX & CONC	117 32 52 24 1.26 Sr6 GT 124 28 61 32 1.89 Sr5 GT		ar clwconc	124 25 62 34 0.820 M.S. @	
	124 22 26 8 2.20 44.8. (77)		BR LEAN CL W/TR ORG	125 22 35 16 1.60 YLD 27		BR LEAN CL W/SA & IR OX	124 25 62 34 0.020 M.S. 20 50 14.4 122 20 35 16 0.010 M.S. 20	
	132 28 28 10 1.84 W.S. (77)		BRSISA	111 24 0.440 M.S. (77)		BRSISA	N P n=46 @	
NO SAMPLE RETAINED	m=7 60			n=27 @9			N P n=30 @ 44	
GR SA	N P n=20 00 70	57	GR 8A	n=80 @ 70		BR SA SICL	25 23 5 1=39 22 .	
	N P n=57 077		W/TR GRAV	n=49 @9		GR SA	N P n=46 (20)	
	N P n≃50 677 50 -1	16.7	W/IR GRAV	n=51 (27) 60 -	8.5		N P 85-78 23 80 -13.6	
	N P (11=23 (17)		W/IR GRAV	n=25 @		BR BA WITR GRAV	Ν P η=52 033	
GR LEAN CL W/5A	N P n=33 0 4		WAGRAV	n=85 @ 90 =	3.5	BR GR SA	N P 11=76 200 90 -25.0	
GR LEAN CL W/SA GR 8A SI CL	18 34 19 n=75 077 28 7 n=100 077		GR SA BICL	11**8		GR LEAN CL	N P 07=86 @	
GR SA LEAN CL	28 7 p=100 617 100 -3 25 33 15 p=69 (19)			n=88 @ 100 -	3.5		20 28 9 11 77 209 100 -35.8	
GR EI SA WISTR CL	N P (1*100)					GR SA SI W/ LENB & STR CL	21 28 8 ne22 209	
GR SA SI	24 28 8 11=109 (11)			110 -	36	GR SI	28 27 4 9-78 23	
GR SA LEAN CL	24 38 19 1-80 98 120 5					GR LEAN CL	21 31 B m-78 🛞	
GR SICL BA	22 28 5 3 ² =100 019			120 -		WILENS SA	19 40 17 n≈60 @0	
GR SA LEAN CL W/TR ORG	22 42 23 11=88 (118) 139 -5	15.7		130 -	3.5	W/LENS SI & SA	22 39 18 11***82 (28) 130 -85.6	
	24 43 25 n=65 019					GR SA WILENS & STR CL	N P 107=77 😪	
BORING ND. 4	24 44 24 n=70 000 140 -1		BORING NO. 5	5TA: 468+36	3.5	BORING NO. 5	N P 07-07 029 140 -75.8	
C LATITUDE: 32" 11" 49.85"N	LOCATION: 35' RT Adopt. CL. DATE TAKEN: 7/14/2004	DRMINO REBISTANCE (TONS)	LATITUDE: 32" 11" 50.00"N LONGITUDE: 92" 08" 38.72"W	LOCATION: 85" LT Adopt. CL	DRMING RESISTANCE (IONS)	LOCATION: 42' RT Adopt CL	DRMING RESISTANCE (TONS)
	LOG MILE:	SQD. LDR.:	CONT. SECT.:	DATE TAKEN: B/25/2004	8TR. NO.; 50D, LDR.;	LONGITUDE: 92' 08' 37.54'W CONT. SECT :	DATE TAKEN: 7/21/2004 LOG MALE:	STR. NQ: SQD. LDR:
	Loainde:	·	CONT. SECT.:	LOO WLE:	SQD, LDR:	CONT. SECT.		
CONC. CONCINCTION	<brown #="" alt.="" alternation="" polymeters<="" td="" understand=""><td>SOIL PROPERTIES Wet density of in-place and, (pounds per cu ft.) determined by , Moishure Content of in-place and, expressed as a percentage of</td><td>WSHTO T208. eLecation</td><td>MISCELLANEOUS: and Identification of thin-wailed tube sumple, AASHTO Y 207</td><td>RESISTANCE AND</td><td>OF PENETRATION SOIL PROPERTIES</td><td>1 A</td><td>A CONTRACTOR</td></brown>	SOIL PROPERTIES Wet density of in-place and, (pounds per cu ft.) determined by , Moishure Content of in-place and, expressed as a percentage of	WSHTO T208. eLecation	MISCELLANEOUS: and Identification of thin-wailed tube sumple, AASHTO Y 207	RESISTANCE AND	OF PENETRATION SOIL PROPERTIES	1 A	A CONTRACTOR
GRAV.=Crimel BL ↓ 10. = Iron Ore GR. ↓ LiG = Lignite GNL	Situo LEN = Lane LOUVO LAVIT&	f the soil, (%), delensioned by DOTO TR 403, Method B. Attentions limits and indices, DOTD TR 428	(a) = Location (with a por	nd identification of this-walled tube sample, AABHTO 1'207, ton of the sample saved for consoliding issuing and identification of BTC constraints and the Topo	SOIL DESIGNATION	"N" Approximate "qu" (blows per ft.) (bons per sq. ft.) LESS THWN 4 4 - 10	/ \/	PF1 vs 27440 PF1 vs 27440 Photoschurk
O ORG. = Organic, RD =	≈F(n)k PKT, ≈Poctant qu ≈ ≈Red STK, ≈Streak SPT a ≈Tint STR, ≈Strata o	Uncontined compressive strength, AASHTO T 208, (lons per sc Standard Panetration Test, AASHTO T 208, number of blowe, i If penetration, unless amount of penetration re shown otbewase	tt) (*, per foot N.C. ⇒ No Cul, n NO PENT → No Cul, n	nd Identification of SPT earnple, AASHTO 7 205 e prehininary 5 in. driving provi it) securing SPT data Mico, unable to drive spit spoon sampler milat 6 inches	AND TO MEDIUM SILT 22 DENSE	10-30 30-50	/	an
D., RT. ⇒Roots WH. =		Unconsolidated Undralined Insule test, AA8HTO T 298, compre- ions per ag R.), of one apecimen conlined at noied pressure (pr	ef the Star	ndice, unable to drive split spoon elempter miller & inches derd Penetration Teet. ery, unable to recover sample for lealing or cleanification	VERY DENSE VERY SOFT	OVER 50		utiolog

• •

-

i T

.

,

	CL CC CC CC CC CC CC CC CC CC CC CC CC C		FT.UBB.	Marty Bearty Bearty Bearty Beartick Bea	ТЕВТРИЕ NO. БТА:		L 47 LT Adapt CL.
•	0, 0 0 0 0 0 0 0 0 0 0 0 0 0	119 32 34 21 0.570 M.S. 39 10 552	BR GN BI W/RA BR LEAN CL BR SI CL W/TH IR OX BR SI CL W/TH IR OX BR GR CL W/TH IR OX BR GR CL W/TH ORO W/TR CONC BR GN CL BR CL W/TR ORO GR CL W/TR ORO	122 18 24 2 0.820 M.S. (19) 128 24 29 9 0.849 M.S. (19) 10 55.1 122 25 25 4 0.900 M.S. (19) 10 55.1	GR BR CLW/R CONC Cop=12%	123 20 31 10 122 M.S. 300 T 114 28 04 37 0.850 S 50 10 54.8 7 10 54.8 7 10 54.8 100 54.8 100 54.8 100 54.8 100 54.8 100005 10005 100005 10005 1000005 10005 100005 100	
	GROL Coperting	122 24 23 5 0.370 M.S. 20 452	BA GR CL W/TA ORC	116 22 N P 0.530 44.8 (1) 20 43.1 116 30 55 28 0.510 8/6 (1) 117 30 75 44 0.820 9/6 (1) 17 10 10 10	BR BICL Crow-5% CR BR LEAN CL GR CL Crow-6%	110 29 27 9 0.470 YLD 39 20 44.8	
	GR CL SA GR CL WITH CAG GR BR CL WITH IN CX	129 21 24 12 0.100 M.8. Image: Constraint of the	BR GN CL BR CL W/TR ORO	117 28 70 41 0.730 5/6 (10) 103 28 71 40 0.200 8/6 (10) 40 25.1	GR CL Ogr-9% BR GR CL BR GR CL GR BLASTEC SI WILLES N ORD & COHC GR STCL SA	112 28 69 41 0.320 5/5 69 41 0.420 40 40 40 40 40 40 42 0.380 5/5 69 40 24.8	
	WITR CONG & IR OX BR LEAN CL		GR CL W/IN ORS	103 54 01 55 0.750 S6 (19) 100 53 64 64 0.410 56 (19) 100 53 64 64 0.410 56 (19) 100 54 64 0.410 56 (19) 59 15.1 100 N P (19) (19) (15) (15)	GR CL WITR IR OX & CON	108 58 60 18 0.550 M.S. (3) 121 21 21 8 0.250 YLD (3) 6 117 28 65 59 1.17 5/5 (3)	
	BR SI 8A BR LEAN CL	121 24 31 16 0.510 YLD 30 52 52 52 52 52 52 52 52 52 52 52 52 52	GR CL W/BA	27 55 34 n=14 19 50 5,1 N P n=17 20 5	GR SI 5A	n=17 🛞 45 n=22 🛞	
		n=35 @ 10 -148	BR SA	N P n=42 @ 50 -149 N P n=42 @ 50 -149	W/R org	n-41 (20) 70 -52 (20) (20) (20) (20) (20) (20) (20) (20	
	SN WITR GRAV			N P m=37 @ 90 = 24.0 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	W/TR ORG	n-21 @	
-			WGRAV W/TR ORG W/TR ORG	N P P~78 @ 100 348 N P m=24 @ 100 348	OR SI SA		
		110 44.8		N P B*50 00 112 540	W/TR ORG	№ №	
		130 44.8	OR LEAN CLW BA	N P NO 57550 CO 25 34 10 11=62 CO 130 -44.9	GR 3A 8J	NG 6*60 69 110 452	
	BORING NO. 7		GR BA LEAN CL BORNG NO. 8 INTANCE (TONS) LATITUDE: 32' 11'55851	BTA: 484+30 LOCATION: 42º RT Adopt CL	GR BA SI BORING NO. 0 DRAVING RESISTANCE (TONB)	5TA: 499+20 LOCATION: 42 LT Adopt CL	
	CONT. SECT.	LOG MLE: SQ0.LDR.	LONGITLDE: 82'05'40.87'W CONT. SECT.	DATE TAKEN: 7808004	8TR. NO.2 LONGITUDE: 82' 00' 43.14" 8G0. LDR.: CONT. SECT.:	V DATE TAKEN: 10/52004 8TR. NO.: LOG MILE: 50D. LDR.:	au
	C MATERIAL CO	EVATIONS & DEFINITIONS BOX, PROPERTIES LOR: STRUCTURE WIT DENSITY = Wei downy of update soil (pounds points and update soil (pounds pounds pound	r cu. R.) determined by AASHTD T208.	MISCELLANEOUS; brailer and Kanalization of this water tube sample, AABHTO T 207 St	CORRELATION OF PENETRATION RESISTANCE AND SOIL PROPERTIES DB. DESIGNATION ("N" Approximate "qu" (bora per rg, ft.)	y ~) /	
-	iii LO, silen Des GR, LU, LUS = Lorde GR, LU, LUS = Lorde GR, NP, = Non-Phanic PK, O GRG = Corports RD LC, PT, = Pant, TH, L, RT, = Racken, WH, K, SA, ≪ Sand YE.	-Gorp LYR = Lyny UQUD LNT 6 = Adabacy balls and exice, DOTD TR 4 -Gorp MOT = Model PLASTOTT NADEX = Pick PKT = Pockst qu = Vincontrad compresent startigh, AAS = Red STK = Start, STF = Startigh Compresent startigh, AAS = Red STK = Start, STF = Startigh Compresent startigh, AAS = Vinte STK = Start, STF = Startigh Contract of ponder = Vinte TIT = Titage UU = Unroponderad Unstituted transitient, Note = Vinte TIT = Unroponderad Unstituted transitient, Model = Unroponderad Unstituted transitient, Model	C28 [C3] CL HTO T208, (powe perso, 8.) [C3] = Lc 228, moneyer N.C. = Maintee No a eldwin clivitwine N.O. = Maintee MSHTID T208, compression estancial NOPENT = Maintee	D Cull, too pretentivery 6 m. chicking proc to associating SPT data. 5 Pervetinence, unable to doive apit spoon samplier millet 8 mches he Standard Pervetinition. Text.	VERY LOOSE Less thus to ND ¥2 LOOSE 4-10 ND ¥2 LOOSE 4-10 ND ¥2 DENSE 30-50 LT ¥0 DENSE 30-50 VERY DRVBE OVER 40 OVER 40 VERY DRVBE OVER 40 COURT 400/25		vilviou
-	Z SI *Sat CO. C VEG = Vegebalon FL	Utblic M.S. = Multiple stream Comparing a (p), and an public text comparing a (p), and an public text comparing a (p), and an analysis of text comparing a (p), and an analysis of text comparing a (p), and an analysis of text comparing a (p), and and an analysis of text comparing a (p), and an analysis of text comparing (p), and an an an ananysis of text comparing (p), an	USHTO T 230, itues specmenis, (c - 8) 24 HPS = U USHTO T 230, (c - 8), 000	PROCOMPLY, MINUTE ID IN CONVENTION OF MERGINAL AND A CONVENTION OF A CONV	5 SOFY 2-4 0.25-0.50	1148 607 1148 607 0.045674 25557	INVATURE AND BEAL IS AFFORD TO ANYWHIA AS CERTIFICATION THAT THE ATOMY TERTING AND ANALYSIS WAS REED ACCORDING TO THE LISTED SUMMER. NO REQUICASIEVTATIONS TESTING

88.32			
30-DEC-20	BR SI 113 13 24 3	DR LEAN CL W/STR BR 31 125 17 35 15 2.36 M.S. (39) 35 36 16 2.36 DR BR CL 106 39 78 44 0,710 Sr5 (37) 10 56 (37) DR BR CL 106 39 78 44 0,710 Sr5 (37) 10 57 10 <td>BR IEEWICL 124 18 32 12 2.21 M.S. (20) 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0 0.500 0 0 0.500 0 0 0.500 0 0 0.500 0 0 0.500 0 0.500 0 0.500 <td< td=""></td<></td>	BR IEEWICL 124 18 32 12 2.21 M.S. (20) 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0.500 0 0 0.500 0 0 0.500 0 0 0.500 0 0 0.500 0 0 0.500 0 0.500 0 0.500 0 <td< td=""></td<>
	Image: Normal State State Image: Normal State State Image: Normal State State Image: Normal State State BR CL W/CONC 105 45 70 46 0.850 59 600 40 24.9 GR CL W/CR0 & CONC 103 26 55 51 0.450 506 600 40 24.9 W/IR OX 102 26 55 51 0.450 506 600 50 14.9 GR LEAN CL W/IR OX & CONC & 122 21 14 42 1.36 595 600 50 14.9 BR St 124 25 22 2 0.500 M.8. 600 50 50 BR St 124 25 22 2 0.500 M.8. 600 50 BR St St N N N n=t8 600 50 50	121 24 44 22 0.460 M.S. (b) GR BR CL WASTRA SI 105 38 61 52 0.440 5/8 (b) 105 105 105 105 105 24.8 (b) 107 40 24.8 107 40 24.8 107 40 107 40 24.8 107 107 40 107 40 250 8/5 (c) 107 40 107 107 10 107 107 10	Image: Construction Constru
FINAL PLANS	N P n=42 Res TD -5.1 GR 8A N P n=43 Res -5.1 -5.1 BR 51 5A W/IR GRO N P n=40 Res -5.1 -5.1 BR 51 5A W/IR GRO N P n=40 Res -5.1 -5.1 BR 51 5A W/IR GRO N P n=42 Res -5.1 -5.1 BR 51 5A W/IR GRO N P n=52 Res -5.1 -5.1 BR 6 GR 5A W/GRAV N P n=28 Res -6.1 -7.5 Res -7.5 -7.5 Res -7.5	BR 81 GA N P m=31 GB 70 -52 GR 3A N P n=88 GB -52	OR BA W/81 N P n=46 (20) 70 -5.0 W/61 N P n=33 (20) -5.0 - <
BORING4. DON	BORNO NO. 10 STA.: 481-18 LATTUDE: 32* 11* 58.4*N LOCATOR: 42RT Adopt CL DATE TAKER: 108/2004 STR. NO: CONT. BEDT: LOG MILE:	BORINO NO. 11 ETA: 500-20 LATITUDE: 32" 11" 68-82"N LOCATION: 42 LT Adapt. CL DINITIDE: 82" 07 46.38"W DATE TACKEL: 822004 STR. NO.: CONT. SECT:	BORING NO. 12 STA.: 502-07 15055.0 Image: state s
R. \GANG2\PROJECTS\015070044\B	STANDARD ABBREVIATIONS & DEFINITIONS EXAMPLANCE EXAMPLANCE MATERIAL CEX.001: STINCTUBE: WET DENSITY */Wit densy of a - places d, gound per cut, 3), detensived by AABHTO COLD - Courselon BL - Bann LL - Alamating COLD - Courselon BL - Bann, ALL - Manatad Wet densy of a - places d, gound per cut, 3), detensived by AABHTO COLD - Courselon BL - Bann, ALL - Manatad Wet densy of a - places d, gound per cut, 3), detensived by AABHTO COLD - Courselon BL - Bann, ALL - Manatad Wot densy of a - places d, gound per cut, 3), detensived by AABHTO COLD - Courselon BL - Bann, ALL - Manterio - Standad - Wet densy of a - places d, gound per cut, 3), detensived by AABHTO LIG - Logan BL - Bann, BL - Manterio - Standad - Manterio - Standad DRG - Organe RD - RAd STX - Steak ST - Construct domograme and stondag, AASHTO T 208, (lose per cq. 8) RT - Rad STX - Steak ST - Goundag / metadora d, AASHTO T 208, (lose per cq. 8) RT - Rad STX - Steak ST <	NO PENDING No No <t< td=""><td>M HES Approximate "str" (bras par ag, ft) LEBO THAND 25 G.35 - 660 G.55 - 100 130 - 200 240 - 400 OVER 4 G0 OVER 4 G0 D</td></t<>	M HES Approximate "str" (bras par ag, ft) LEBO THAND 25 G.35 - 660 G.55 - 100 130 - 200 240 - 400 OVER 4 G0 OVER 4 G0 D

.